Suppr超能文献

纳米级异质性促进骨骼中的能量耗散。

Nanoscale heterogeneity promotes energy dissipation in bone.

作者信息

Tai Kuangshin, Dao Ming, Suresh Subra, Palazoglu Ahmet, Ortiz Christine

机构信息

Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

出版信息

Nat Mater. 2007 Jun;6(6):454-62. doi: 10.1038/nmat1911. Epub 2007 May 21.

Abstract

Nanomechanical heterogeneity is expected to influence elasticity, damage, fracture and remodelling of bone. Here, the spatial distribution of nanomechanical properties of bone is quantified at the length scale of individual collagen fibrils. Our results show elaborate patterns of stiffness ranging from approximately 2 to 30 GPa, which do not correlate directly with topographical features and hence are attributed to underlying local structural and compositional variations. We propose a new energy-dissipation mechanism arising from nanomechanical heterogeneity, which offers a means for ductility enhancement, damage evolution and toughening. This hypothesis is supported by computational simulations that incorporate the nanoscale experimental results. These simulations predict that non-uniform inelastic deformation over larger areas and increased energy dissipation arising from nanoscale heterogeneity lead to markedly different biomechanical properties compared with a uniform material. The fundamental concepts discovered here are applicable to a broad class of biological materials and may serve as a design consideration for biologically inspired materials technologies.

摘要

纳米力学异质性预计会影响骨骼的弹性、损伤、断裂和重塑。在此,在单个胶原纤维的长度尺度上对骨骼纳米力学性能的空间分布进行了量化。我们的结果显示出刚度的精细模式,范围从大约2到30吉帕,这与地形特征没有直接关联,因此归因于潜在的局部结构和成分变化。我们提出了一种由纳米力学异质性产生的新的能量耗散机制,它为延展性增强、损伤演化和增韧提供了一种手段。这一假设得到了纳入纳米尺度实验结果的计算模拟的支持。这些模拟预测,与均匀材料相比,更大区域的非均匀非弹性变形以及纳米尺度异质性导致的能量耗散增加会导致明显不同的生物力学性能。这里发现的基本概念适用于广泛的生物材料类别,并可能作为生物启发材料技术的设计考量因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验