Gambardella Alessandro, Marchiori Gregorio, Maglio Melania, Boi Marco, Montesissa Matteo, Bertacchini Jessika, Biressi Stefano, Baldini Nicola, Giavaresi Gianluca, Bontempi Marco
Scienze e Tecnologie Chirurgiche, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
Scienze e Tecnologie Biomediche e Nanobiotecnologie, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy.
J Funct Biomater. 2025 Jul 29;16(8):276. doi: 10.3390/jfb16080276.
Atomic force microscopy (AFM)-based nanoindentation enables investigation of the mechanical response of biological materials at a subcellular scale. However, quantitative estimates of mechanical parameters such as the elastic modulus (E) remain unreliable because the influence of sample roughness on E measurements at the nanoscale is still poorly understood. This study re-examines the interpretation of roughness from a more rigorous perspective and validates an experimental methodology to extract roughness at each nanoindentation site-i.e., the local roughness γ-with which the corresponding E value can be accurately correlated. Cortical regions of a murine tibia cross-section, characterized by complex nanoscale morphology, were selected as a testbed. Eighty non-overlapping nanoindentations were performed using two different AFM tips, maintaining a maximum penetration depth of 10 nm for each measurement. Our results show a slight decreasing trend of E versus γ (Spearman's rank correlation coefficient ρ = -0.27187). A total of 90% of the E values are reliable when γ < 10 nm (coefficient of determination R > 0.90), although low γ values are associated with significant dispersion around E (γ = 0) = E = 1.18 GPa, with variations exceeding 50%. These findings are consistent with a qualitative tip-to-sample contact model that accounts for the pronounced roughness heterogeneity typical of bone topography at the nanoscale.
基于原子力显微镜(AFM)的纳米压痕技术能够在亚细胞尺度上研究生物材料的力学响应。然而,诸如弹性模量(E)等力学参数的定量估计仍然不可靠,因为在纳米尺度下,样品粗糙度对E测量值的影响仍未得到充分理解。本研究从更严格的角度重新审视了粗糙度的解释,并验证了一种实验方法,用于在每个纳米压痕位点提取粗糙度,即局部粗糙度γ,通过它可以准确关联相应的E值。选择具有复杂纳米级形态的小鼠胫骨横截面的皮质区域作为测试平台。使用两种不同的AFM探针进行了80次不重叠的纳米压痕实验,每次测量的最大穿透深度保持在10 nm。我们的结果显示E与γ呈轻微下降趋势(斯皮尔曼等级相关系数ρ = -0.27187)。当γ < 10 nm时,90%的E值是可靠的(决定系数R > 0.90),尽管低γ值与E周围的显著离散有关(γ = 0时) = E = 1.18 GPa,变化超过50%。这些发现与一个定性的针尖与样品接触模型一致,该模型考虑了纳米尺度下骨表面典型的明显粗糙度异质性。