Suppr超能文献

受限意识下对情绪面孔的注意再探讨:情绪面孔会自动吸引注意吗?

Attention for emotional faces under restricted awareness revisited: do emotional faces automatically attract attention?

作者信息

Koster Ernst H W, Verschuere Bruno, Burssens Benjamin, Custers Roel, Crombez Geert

机构信息

Department of Psychology, Ghent University, Ghent, Belgium.

出版信息

Emotion. 2007 May;7(2):285-95. doi: 10.1037/1528-3542.7.2.285.

Abstract

Theoretical models of attention for affective information have assigned a special status to the cognitive processing of emotional facial expressions. One specific claim in this regard is that emotional faces automatically attract visual attention. In three experiments, the authors investigated attentional cueing by angry, happy, and neutral facial expressions that were presented under conditions of limited awareness. In these experiments, facial expressions were presented in a masked (14 ms or 34 ms, masked by a neutral face) and unmasked fashion (34 ms or 100 ms). Compared with trials containing neutral cues, delayed responding was found on trials with emotional cues in the unmasked, 100-ms condition, suggesting stronger allocation of cognitive resources to emotional faces. However, in both masked and unmasked conditions, the hypothesized cueing of visual attention to the location of emotional facial expression was not found. In contrary, attentional cueing by emotional faces was less strong compared with neutral faces in the unmasked, 100-ms condition. These data suggest that briefly presented emotional faces influence cognitive processing but do not automatically capture visual attention.

摘要

情感信息的注意理论模型赋予了对情绪化面部表情的认知加工一种特殊地位。在这方面的一个具体观点是,情绪化面孔会自动吸引视觉注意。在三项实验中,作者研究了在意识受限条件下呈现的愤怒、高兴和中性面部表情所产生的注意提示效应。在这些实验中,面部表情以两种方式呈现:一种是掩蔽方式(14毫秒或34毫秒,由中性面孔掩蔽),另一种是未掩蔽方式(34毫秒或100毫秒)。与包含中性提示的试验相比,在未掩蔽的100毫秒条件下,带有情感提示的试验出现了反应延迟,这表明对情绪化面孔分配了更强的认知资源。然而,在掩蔽和未掩蔽条件下,均未发现视觉注意被假设性地提示到情绪化面部表情的位置。相反,在未掩蔽的100毫秒条件下,与中性面孔相比,情绪化面孔的注意提示效应较弱。这些数据表明,短暂呈现的情绪化面孔会影响认知加工,但不会自动捕获视觉注意。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验