Xue Yanbo, Yang Le, Haykin Simon
Electrical and Computer Engineering Department, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
Neural Netw. 2007 Apr;20(3):365-76. doi: 10.1016/j.neunet.2007.04.014. Epub 2007 May 3.
Building on some prior work, in this paper we describe a novel structure termed the decoupled echo state network (DESN) involving the use of lateral inhibition. Two low-complexity implementation schemes, namely, the DESN with reservoir prediction (DESN + RP) and DESN with maximum available information (DESN + MaxInfo), are developed: (1) In the multiple superimposed oscillator (MSO) problem, DESN + MaxInfo exhibits three important attributes: lower generalization mean-square error (MSE), better robustness with respect to the random generation of reservoir weight matrix and feedback connections, and robustness to variations in the sparseness of reservoir weight matrix, compared to DESN + RP. (2) For a noiseless nonlinear prediction task, DESN + RP outperforms the DESN + MaxInfo and single reservoir-based ESN approach in terms of lower prediction MSE and better robustness to a change in the number of inputs and sparsity of the reservoir weight matrix. Finally, in a real-life prediction task using noisy sea clutter data, both schemes exhibit higher prediction accuracy and successful design ratio than a conventional ESN with a single reservoir.
基于先前的一些工作,在本文中,我们描述了一种涉及使用侧向抑制的新型结构,称为解耦回声状态网络(DESN)。我们开发了两种低复杂度的实现方案,即带储层预测的DESN(DESN + RP)和带最大可用信息的DESN(DESN + MaxInfo):(1)在多重叠加振荡器(MSO)问题中,与DESN + RP相比,DESN + MaxInfo具有三个重要特性:更低的泛化均方误差(MSE)、对储层权重矩阵和反馈连接的随机生成具有更好的鲁棒性,以及对储层权重矩阵稀疏度变化的鲁棒性。(2)对于无噪声非线性预测任务,DESN + RP在更低的预测MSE以及对输入数量变化和储层权重矩阵稀疏度的更好鲁棒性方面优于DESN + MaxInfo和基于单个储层的回声状态网络(ESN)方法。最后,在使用有噪声海杂波数据的实际预测任务中,这两种方案都比具有单个储层的传统ESN表现出更高的预测精度和成功设计率。