Duport François, Smerieri Anteo, Akrout Akram, Haelterman Marc, Massar Serge
OPERA-Photonique, CP 194/5, Université Libre de Bruxelles (U.L.B.), Avenue Adolphe Buyl 87, 1050 Brussels, Belgium.
Laboratoire d'Information Quantique, CP 224, Université Libre de Bruxelles (U.L.B.), Boulevard du Triomphe, 1050 Brussels, Belgium.
Sci Rep. 2016 Mar 3;6:22381. doi: 10.1038/srep22381.
Introduced a decade ago, reservoir computing is an efficient approach for signal processing. State of the art capabilities have already been demonstrated with both computer simulations and physical implementations. If photonic reservoir computing appears to be promising a solution for ultrafast nontrivial computing, all the implementations presented up to now require digital pre or post processing, which prevents them from exploiting their full potential, in particular in terms of processing speed. We address here the possibility to get rid simultaneously of both digital pre and post processing. The standalone fully analogue reservoir computer resulting from our endeavour is compared to previous experiments and only exhibits rather limited degradation of performances. Our experiment constitutes a proof of concept for standalone physical reservoir computers.
十年前引入的储层计算是一种用于信号处理的有效方法。计算机模拟和物理实现都已经证明了其先进的能力。如果光子储层计算似乎有望成为超快非平凡计算的解决方案,那么到目前为止所展示的所有实现都需要数字预处理或后处理,这使得它们无法充分发挥其潜力,特别是在处理速度方面。我们在此探讨同时摆脱数字预处理和后处理的可能性。我们努力得到的独立全模拟储层计算机与先前的实验进行了比较,结果仅表现出相当有限的性能下降。我们的实验构成了独立物理储层计算机的概念验证。