Bernstein Center Freiburg Freiburg, Germany.
Front Neuroinform. 2010 Jul 7;4. doi: 10.3389/fninf.2010.00011. eCollection 2010.
Echo State Networks (ESN) are reservoir networks that satisfy well-established criteria for stability when constructed as feedforward networks. Recent evidence suggests that stability criteria are altered in the presence of reservoir substructures, such as clusters. Understanding how the reservoir architecture affects stability is thus important for the appropriate design of any ESN. To quantitatively determine the influence of the most relevant network parameters, we analyzed the impact of reservoir substructures on stability in hierarchically clustered ESNs, as they allow a smooth transition from highly structured to increasingly homogeneous reservoirs. Previous studies used the largest eigenvalue of the reservoir connectivity matrix (spectral radius) as a predictor for stable network dynamics. Here, we evaluate the impact of clusters, hierarchy and intercluster connectivity on the predictive power of the spectral radius for stability. Both hierarchy and low relative cluster sizes extend the range of spectral radius values, leading to stable networks, while increasing intercluster connectivity decreased maximal spectral radius.
回声状态网络 (ESN) 是储层网络,当它们被构建为前馈网络时,满足稳定性的既定标准。最近的证据表明,在存在储层子结构(如簇)的情况下,稳定性标准会发生改变。因此,了解储层结构如何影响稳定性对于 ESN 的适当设计非常重要。为了定量确定最相关的网络参数的影响,我们分析了储层子结构对分层聚类 ESN 中稳定性的影响,因为它们允许从高度结构化到越来越均匀的储层的平稳过渡。以前的研究使用储层连接矩阵的最大特征值(谱半径)作为稳定网络动力学的预测因子。在这里,我们评估了簇、层次结构和簇间连接对谱半径稳定性预测能力的影响。层次结构和较小的相对簇大小都会扩展谱半径值的范围,从而导致稳定的网络,而增加簇间连接会降低最大谱半径。