Sharma Deepak, Perisic Ognjen, Peng Qing, Cao Yi, Lam Canaan, Lu Hui, Li Hongbin
Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.
Proc Natl Acad Sci U S A. 2007 May 29;104(22):9278-83. doi: 10.1073/pnas.0700351104. Epub 2007 May 21.
It is recognized that shear topology of two directly connected force-bearing terminal beta-strands is a common feature among the vast majority of mechanically stable proteins known so far. However, these proteins belong to only two distinct protein folds, Ig-like beta sandwich fold and beta-grasp fold, significantly hindering delineating molecular determinants of mechanical stability and rational tuning of mechanical properties. Here we combine single-molecule atomic force microscopy and steered molecular dynamics simulation to reveal that the de novo designed Top7 fold [Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Science 302:1364-1368] represents a mechanically stable protein fold that is distinct from Ig-like beta sandwich and beta-grasp folds. Although the two force-bearing beta strands of Top7 are not directly connected, Top7 displays significant mechanical stability, demonstrating that the direct connectivity of force-bearing beta strands in shear topology is not mandatory for mechanical stability. This finding broadens our understanding of the design of mechanically stable proteins and expands the protein fold space where mechanically stable proteins can be screened. Moreover, our results revealed a substructure-sliding mechanism for the mechanical unfolding of Top7 and the existence of two possible unfolding pathways with different height of energy barrier. Such insights enabled us to rationally tune the mechanical stability of Top7 by redesigning its mechanical unfolding pathway. Our study demonstrates that computational biology methods (including de novo design) offer great potential for designing proteins of defined topology to achieve significant and tunable mechanical properties in a rational and systematic fashion.
人们认识到,两个直接相连的承载力末端β链的剪切拓扑结构是迄今为止已知的绝大多数机械稳定蛋白质的共同特征。然而,这些蛋白质仅属于两种不同的蛋白质折叠类型,即免疫球蛋白样β三明治折叠和β抓握折叠,这极大地阻碍了对机械稳定性分子决定因素的描绘以及对机械性能的合理调控。在此,我们结合单分子原子力显微镜和定向分子动力学模拟,以揭示从头设计的Top7折叠结构[Kuhlman B, Dantas G, Ireton GC, Varani G, Stoddard BL, Baker D (2003) Science 302:1364 - 1368]代表一种与免疫球蛋白样β三明治折叠和β抓握折叠不同的机械稳定蛋白质折叠结构。尽管Top7的两条承载力β链没有直接相连,但Top7表现出显著的机械稳定性,这表明在剪切拓扑结构中,承载力β链的直接连接对于机械稳定性并非是必需的。这一发现拓宽了我们对机械稳定蛋白质设计的理解,并扩大了可筛选机械稳定蛋白质的蛋白质折叠空间。此外,我们的结果揭示了Top7机械解折叠的亚结构滑动机制以及存在两种具有不同能量屏障高度的可能解折叠途径。这些见解使我们能够通过重新设计其机械解折叠途径来合理调控Top7的机械稳定性。我们的研究表明,计算生物学方法(包括从头设计)在以合理且系统的方式设计具有特定拓扑结构的蛋白质以实现显著且可调控的机械性能方面具有巨大潜力。