Nakanishi-Matsui Mayumi, Kashiwagi Sachiko, Ubukata Toshiharu, Iwamoto-Kihara Atsuko, Wada Yoh, Futai Masamitsu
Futai Special Laboratory, Microbial Chemistry Research Center, Microbial Chemistry Research Foundation, Tokyo 141-0021, Japan.
J Biol Chem. 2007 Jul 13;282(28):20698-704. doi: 10.1074/jbc.M700551200. Epub 2007 May 21.
A complex of gamma, epsilon, and c subunits rotates in ATP synthase (FoF(1)) coupled with proton transport. A gold bead connected to the gamma subunit of the Escherichia coli F(1) sector exhibited stochastic rotation, confirming a previous study (Nakanishi-Matsui, M., Kashiwagi, S., Hosokawa, H., Cipriano, D. J., Dunn, S. D., Wada, Y., and Futai, M. (2006) J. Biol. Chem. 281, 4126-4131). A similar approach was taken for mutations in the beta subunit key region; consistent with its bulk phase ATPase activities, F(1) with the Ser-174 to Phe substitution (betaS174F) exhibited a slower single revolution time (time required for 360 degree revolution) and paused almost 10 times longer than the wild type at one of the three 120 degrees positions during the stepped revolution. The pause positions were probably not at the "ATP waiting" dwell but at the "ATP hydrolysis/product release" dwell, since the ATP concentration used for the assay was approximately 30-fold higher than the K(m) value for ATP. A betaGly-149 to Ala substitution in the phosphate binding P-loop suppressed the defect of betaS174F. The revertant (betaG149A/betaS174F) exhibited similar rotation to the wild type, except that it showed long pauses less frequently. Essentially the same results were obtained with the Ser-174 to Leu substitution and the corresponding revertant betaG149A/betaS174L. These results indicate that the domain between beta-sheet 4 (betaSer-174) and P-loop (betaGly-149) is important to drive rotation.
γ、ε和c亚基复合体在与质子转运偶联的ATP合酶(F₀F₁)中旋转。连接到大肠杆菌F₁区段γ亚基的金珠呈现随机旋转,证实了先前的一项研究(中岸松井,M.,柏木,S.,细川,H.,西普里亚诺,D. J.,邓恩,S. D.,和田,Y.,及太田,M.(2006年)《生物化学杂志》281卷,4126 - 4131页)。对β亚基关键区域的突变采用了类似方法;与其实体相ATP酶活性一致,具有Ser - 174到Phe取代(βS174F)的F₁表现出较慢的单圈旋转时间(360度旋转所需时间),并且在阶梯式旋转过程中,在三个120度位置之一处比野生型停顿时间长近10倍。停顿位置可能不在“ATP等待”驻留期,而是在“ATP水解/产物释放”驻留期,因为用于测定的ATP浓度比ATP的Kₘ值高约30倍。磷酸结合P环中βGly - 149到Ala取代抑制了βS174F的缺陷。回复突变体(βG149A/βS174F)表现出与野生型相似的旋转,只是较少出现长时间停顿。用Ser - 174到Leu取代以及相应的回复突变体βG149A/βS174L获得了基本相同的结果。这些结果表明β折叠4(βSer - 174)和P环(βGly - 149)之间的结构域对驱动旋转很重要。