Davidson Paul R, Jones Richard D, Peiris Malik T R
Van der Veer Institute for Parkinson's and Brain Research, Christchurch, New Zealand.
IEEE Trans Biomed Eng. 2007 May;54(5):832-9. doi: 10.1109/TBME.2007.893452.
A warning system capable of reliably detecting lapses in responsiveness (lapses) has the potential to prevent many fatal accidents. We have developed a system capable of detecting lapses in real-time with second-scale temporal resolution. Data was from 15 subjects performing a visuomotor tracking task for two 1-hour sessions with concurrent electroencephalogram (EEG) and facial video recordings. The detector uses a neural network with normalized EEG log-power spectrum inputs from two bipolar EEG derivations, though we also considered a multichannel detector. Lapses, identified using a combination of video rating and tracking behavior, were used to train our detector. We compared detectors employing tapped delay-line linear perceptron, tapped delay-line multilayer perceptron (TDL-MLP), and long short-term memory (LSTM) recurrent neural networks operating continuously at 1 Hz. Using estimates of EEG log-power spectra from up to 4 s prior to a lapse improved detection compared with only using the most recent estimate. We report the first application of a LSTM to an EEG analysis problem. LSTM performance was equivalent to the best TDL-MLP network but did not require an input buffer. Overall performance was satisfactory with area under the curve from receiver operating characteristic analysis of 0.84 +/- 0.02 (mean +/- SE) and area under the precision-recall curve of 0.41 +/- 0.08.
一种能够可靠检测反应迟钝(失误)的预警系统有潜力预防许多致命事故。我们开发了一种能够以秒级时间分辨率实时检测失误的系统。数据来自15名受试者,他们进行了两个1小时的视觉运动跟踪任务,同时记录脑电图(EEG)和面部视频。该检测器使用一个神经网络,其输入为来自两个双极EEG导联的归一化EEG对数功率谱,不过我们也考虑了多通道检测器。通过视频评分和跟踪行为相结合来识别失误,并用其训练我们的检测器。我们比较了采用抽头延迟线线性感知器、抽头延迟线多层感知器(TDL-MLP)和以1Hz持续运行的长短期记忆(LSTM)递归神经网络的检测器。与仅使用最新估计值相比,使用失误前长达4秒的EEG对数功率谱估计值可提高检测效果。我们报告了LSTM在EEG分析问题上的首次应用。LSTM的性能与最佳TDL-MLP网络相当,但不需要输入缓冲区。总体性能令人满意,接收器操作特征分析的曲线下面积为0.84±0.02(平均值±标准误差),精确召回曲线下面积为0.41±0.08。