Department of Neurology, Peking Union Medical College Hospital, Beijing, 100730, China.
NetEase Media Technology Co., Ltd., Beijing, 100084, China.
Neural Netw. 2024 Jul;175:106319. doi: 10.1016/j.neunet.2024.106319. Epub 2024 Apr 14.
To enhance deep learning-based automated interictal epileptiform discharge (IED) detection, this study proposes a multimodal method, vEpiNet, that leverages video and electroencephalogram (EEG) data. Datasets comprise 24 931 IED (from 484 patients) and 166 094 non-IED 4-second video-EEG segments. The video data is processed by the proposed patient detection method, with frame difference and Simple Keypoints (SKPS) capturing patients' movements. EEG data is processed with EfficientNetV2. The video and EEG features are fused via a multilayer perceptron. We developed a comparative model, termed nEpiNet, to test the effectiveness of the video feature in vEpiNet. The 10-fold cross-validation was used for testing. The 10-fold cross-validation showed high areas under the receiver operating characteristic curve (AUROC) in both models, with a slightly superior AUROC (0.9902) in vEpiNet compared to nEpiNet (0.9878). Moreover, to test the model performance in real-world scenarios, we set a prospective test dataset, containing 215 h of raw video-EEG data from 50 patients. The result shows that the vEpiNet achieves an area under the precision-recall curve (AUPRC) of 0.8623, surpassing nEpiNet's 0.8316. Incorporating video data raises precision from 70% (95% CI, 69.8%-70.2%) to 76.6% (95% CI, 74.9%-78.2%) at 80% sensitivity and reduces false positives by nearly a third, with vEpiNet processing one-hour video-EEG data in 5.7 min on average. Our findings indicate that video data can significantly improve the performance and precision of IED detection, especially in prospective real clinic testing. It suggests that vEpiNet is a clinically viable and effective tool for IED analysis in real-world applications.
为了提高基于深度学习的自动间发性癫痫样放电 (IED) 检测,本研究提出了一种多模态方法 vEpiNet,该方法利用视频和脑电图 (EEG) 数据。数据集包括 24931 个 IED(来自 484 名患者)和 166094 个非 IED 4 秒视频-EEG 段。视频数据通过所提出的患者检测方法进行处理,通过帧差和简单关键点 (SKPS) 捕捉患者的运动。EEG 数据使用 EfficientNetV2 进行处理。视频和 EEG 特征通过多层感知机融合。我们开发了一种名为 nEpiNet 的对比模型来测试 vEpiNet 中视频特征的有效性。使用 10 折交叉验证进行测试。10 折交叉验证表明两个模型的接收器操作特征曲线 (AUROC) 下面积都很高,vEpiNet 的 AUROC(0.9902)略高于 nEpiNet(0.9878)。此外,为了测试模型在实际场景中的性能,我们设置了一个前瞻性测试数据集,包含 50 名患者的 215 小时原始视频-EEG 数据。结果表明,vEpiNet 的精度-召回曲线下面积 (AUPRC) 达到 0.8623,超过 nEpiNet 的 0.8316。纳入视频数据可将 80%灵敏度下的精度从 70%(95%CI,69.8%-70.2%)提高到 76.6%(95%CI,74.9%-78.2%),并将假阳性减少近三分之一,vEpiNet 平均每小时处理 5.7 分钟的视频-EEG 数据。我们的研究结果表明,视频数据可以显著提高 IED 检测的性能和精度,尤其是在前瞻性的实际临床测试中。这表明 vEpiNet 是一种在实际应用中用于 IED 分析的可行且有效的工具。