Xie Chao, Reynolds David, Awad Hani, Rubery Paul T, Pelled Gadi, Gazit Dan, Guldberg Robert E, Schwarz Edward M, O'Keefe Regis J, Zhang Xinping
Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, New York 14642, USA.
Tissue Eng. 2007 Mar;13(3):435-45. doi: 10.1089/ten.2006.0182.
The presence of live periosteal progenitor cells on the surface of bone autografts confers better healing than devitalized allograft. We have previously demonstrated in a murine 4 mm segmental femoral bone-grafting model that live periosteum produces robust endochondral and intramembraneous bone formation that is essential for effective healing and neovascularization of structural bone grafts. To the end of engineering a live pseudo-periosteum that could induce a similar response onto devitalized bone allograft, we seeded a mesenchymal stem cell line stably transfected with human bone morphogenic protein-2/beta-galactosidase (C9) onto devitalized bone allografts or onto a membranous small intestinal submucosa scaffold that was wrapped around the allograft. Histology showed that C9-coated allografts displayed early cartilaginous tissue formation at day 7. By 6 and 9 weeks, a new cortical shell was found bridging the segmental defect that united the host bones. Biomechanical testing showed that C9-coated allografts displayed torsional strength and stiffness equivalent to intact femurs at 6 weeks and superior to live isografts at 9 weeks. Volumetric and histomorphometric micro-computed tomography analyses demonstrated a 2-fold increase in new bone formation around C9-coated allografts, which resulted in a substantial increase in polar moment of inertia (pMOI) due to the formation of new cortical shell around the allografts. Positive correlations between biomechanics and new bone volume and pMOI were found, suggesting that the biomechanical function of the grafted femur relates to both morphological parameters. C9-coated allograft also exhibited slower resorption of the graft cortex at 9 weeks than live isograft. Both new bone formation and the persistent allograft likely contributed to the improved biomechanics of C9-coated allograft. Taken together, we propose a novel strategy to combine structural bone allograft with genetically engineered mesenchymal stem cells as a novel platform for bone tissue engineering.
自体骨移植表面存在的活骨膜祖细胞比失活的同种异体移植骨具有更好的愈合效果。我们之前在小鼠4毫米节段性股骨移植模型中证明,活骨膜能产生强大的软骨内成骨和膜内成骨,这对于结构性骨移植的有效愈合和新生血管形成至关重要。为了构建一种能在失活同种异体骨移植上诱导类似反应的活假骨膜,我们将稳定转染了人骨形态发生蛋白-2/β-半乳糖苷酶(C9)的间充质干细胞系接种到失活同种异体骨移植上,或接种到包裹在同种异体骨移植周围的膜状小肠黏膜下层支架上。组织学检查显示,C9包被的同种异体骨移植在第7天出现早期软骨组织形成。到6周和9周时,发现有一个新的皮质壳桥接节段性缺损并连接宿主骨。生物力学测试表明,C9包被的同种异体骨移植在6周时的扭转强度和刚度与完整股骨相当,在9周时优于活的同基因移植骨。体积和组织形态计量学微计算机断层扫描分析表明,C9包被的同种异体骨移植周围的新骨形成增加了2倍,这由于同种异体骨周围形成新的皮质壳而导致极惯性矩(pMOI)大幅增加。发现生物力学与新骨体积和pMOI之间存在正相关,表明移植股骨的生物力学功能与两个形态学参数都有关。C9包被的同种异体骨移植在9周时的移植骨皮质吸收也比活的同基因移植骨慢。新骨形成和持续存在的同种异体骨可能都有助于改善C9包被的同种异体骨移植的生物力学性能。综上所述,我们提出了一种将结构性同种异体骨移植与基因工程间充质干细胞相结合的新策略,作为骨组织工程的一个新平台。