Kostek Matthew C, Chen Yi-Wen, Cuthbertson Daniel J, Shi Rongye, Fedele Mark J, Esser Karyn A, Rennie Michael J
Center for Genetic Medicine Research, Children's National Medical Center, Washington, District of Columbia 20010, USA.
Physiol Genomics. 2007 Sep 19;31(1):42-52. doi: 10.1152/physiolgenomics.00151.2006. Epub 2007 May 22.
Resistance training using lengthening (eccentric) contractions induces greater increases in muscle size than shortening (concentric) contractions, but the underlying molecular mechanisms are not clear. Using temporal expression profiling, we compared changes in gene expression within 24 h of an acute bout of each type of contractions conducted simultaneously in the quadriceps of different legs. Five healthy young men performed shortening contractions with one leg while the contralateral leg performed lengthening contractions. Biopsies were taken from both legs before exercise and 3, 6, and 24 h afterwards, in the fed state. Expression profiling (n = 3) was performed using a custom-made Affymetrix MuscleChip containing probe sets of approximately 3,300 known genes and expressed sequence tags expressed in skeletal muscle. We identified 51 transcripts differentially regulated between the two exercise modes. Using unsupervised hierarchical clustering, we identified four distinct clusters, three of which corresponded to unique functional categories (protein synthesis, stress response/early growth, and sarcolemmal structure). Using quantitative RT-PCR (n = 5), we verified expression changes (lengthening/shortening) in SIX1 (3 h, -1.9-fold, P < 0.001), CSRP3 (6 h, 2.9-fold, P < 0.05), and MUSTN1 (24 h, 4.3-fold, P < 0.05). We examined whether FBXO32/atrogin-1/MAFbx, a known regulator of protein breakdown and of muscle atrophy was differentially expressed: the gene was downregulated after lengthening contractions (3 h, 2.7-fold, P < 0.05; 6 h, 3.3-fold, P < 0.05; 24 h, 2.3-fold, P < 0.05). The results suggested that lengthening and shortening contractions activated distinct molecular pathways as early as 3 h postexercise. The molecular differences might contribute to mechanisms underlying the physiological adaptations seen with training using the two modes of exercise.
与缩短(向心)收缩相比,使用延长(离心)收缩进行抗阻训练能使肌肉尺寸增加得更多,但潜在的分子机制尚不清楚。我们采用时间表达谱分析方法,比较了在不同腿的股四头肌中同时进行每种类型的急性单次收缩后24小时内基因表达的变化。五名健康的年轻男性,一条腿进行缩短收缩,而对侧腿进行延长收缩。在进食状态下,于运动前以及运动后3小时、6小时和24小时从双腿取活检样本。使用定制的Affymetrix肌肉芯片进行表达谱分析(n = 3),该芯片包含约3300个已知基因的探针组以及在骨骼肌中表达的表达序列标签。我们鉴定出两种运动模式之间有51个转录本受到差异调节。使用无监督层次聚类,我们确定了四个不同的簇,其中三个对应于独特的功能类别(蛋白质合成、应激反应/早期生长和肌膜结构)。使用定量RT-PCR(n = 5),我们验证了SIX1(3小时,-1.9倍,P < 0.001)、CSRP3(6小时,2.9倍,P < 0.05)和MUSTN1(24小时,4.3倍,P < 0.05)的表达变化(延长/缩短)。我们研究了已知的蛋白质分解和肌肉萎缩调节因子FBXO32/atrogin-1/MAFbx是否存在差异表达:该基因在延长收缩后下调(3小时,2.7倍,P < 0.05;6小时,3.3倍,P < 0.05;24小时,2.3倍,P < 0.05)。结果表明,延长收缩和缩短收缩在运动后3小时就激活了不同的分子途径。这些分子差异可能有助于解释使用这两种运动模式训练所观察到的生理适应的潜在机制。