Ehrlich Hermann, Krautter Manfred, Hanke Thomas, Simon Paul, Knieb Christiane, Heinemann Sascha, Worch Hartmut
Max Bergmann Center of Biomaterials, Institute of Materials Science, Dresden University of Technology, Dresden, Germany.
J Exp Zool B Mol Dev Evol. 2007 Jul 15;308(4):473-83. doi: 10.1002/jez.b.21174.
Sponges (Porifera) are presently gaining increased scientific attention because of their secondary metabolites and specific skeleton structures. In contrast to demosponges, whose skeletons are formed from biopolymer spongin, glass sponges (hexactinellids) possess silica-organic composites as the main natural material for their skeletal fibres. Chitin has a crystalline structure and it constitutes a network of organized fibres. This structure confers rigidity and resistance to organisms that contain it, including monocellular (yeast, amoeba, diatoms) and multicellular (higher fungi, arthropods, nematodes, molluscs) organisms. In contrast to different marine invertebrates whose exoskeletons are built of chitin, this polysaccharide has not been found previously as an endogenous biopolymer within glass sponges (Hexactinellida). We hypothesized that glass sponges, which are considered to be the most basal lineage of multicellular animals, must possess chitin. Here, we present a detailed study of the structural and physico-chemical properties of skeletal fragments of the glass sponge Farrea occa. We show that these fibres have a layered design with specific compositional variations in the chitin/silica composite. We applied an effective approach for the demineralization of glass sponge skeletal formations based on an etching procedure using alkali solutions. The results show unambiguously that alpha-chitin is an essential component of the skeletal structures of Hexactinellida. This is the first report of a silica-chitin's composite biomaterial found in nature. From this perspective, the view that silica-chitin scaffolds may be key templates for skeleton formation also in ancestral unicellular organisms, rather than silica-protein composites, emerges as a viable alternative hypothesis.
由于海绵动物(多孔动物门)的次生代谢产物和特殊的骨骼结构,它们目前正受到越来越多的科学关注。与骨骼由生物聚合物海绵硬蛋白构成的寻常海绵纲不同,玻璃海绵(六放海绵纲)的骨骼纤维主要天然材料是二氧化硅 - 有机复合材料。几丁质具有晶体结构,它构成了有组织的纤维网络。这种结构赋予含有它的生物体以刚性和抗性,这些生物体包括单细胞生物(酵母、变形虫、硅藻)和多细胞生物(高等真菌、节肢动物、线虫、软体动物)。与外骨骼由几丁质构成的不同海洋无脊椎动物相比,此前在玻璃海绵(六放海绵纲)中尚未发现这种多糖作为内源性生物聚合物。我们推测,被认为是多细胞动物最原始谱系的玻璃海绵必定含有几丁质。在此,我们对玻璃海绵奥氏偕老同穴骨骼碎片的结构和物理化学性质进行了详细研究。我们表明,这些纤维具有分层设计,在几丁质/二氧化硅复合材料中存在特定的成分变化。我们基于使用碱性溶液的蚀刻程序,应用了一种有效的玻璃海绵骨骼结构脱矿质方法。结果明确表明,α - 几丁质是六放海绵纲骨骼结构的重要组成部分。这是自然界中发现的二氧化硅 - 几丁质复合生物材料的首次报道。从这个角度来看,二氧化硅 - 几丁质支架可能也是祖先单细胞生物骨骼形成的关键模板,而非二氧化硅 - 蛋白质复合材料,这一观点成为了一个可行的替代假说。