Suppr超能文献

R2R3-MYB转录因子HAG1/MYB28是拟南芥中蛋氨酸衍生的硫代葡萄糖苷生物合成的调节因子。

The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana.

作者信息

Gigolashvili Tamara, Yatusevich Ruslan, Berger Bettina, Müller Caroline, Flügge Ulf-Ingo

机构信息

Botanisches Institut der Universität zu Köln, Gyrhofstrasse 15, Köln, Germany.

出版信息

Plant J. 2007 Jul;51(2):247-61. doi: 10.1111/j.1365-313X.2007.03133.x. Epub 2007 May 23.

Abstract

Methionine-derived glucosinolates belong to a class of plant secondary metabolites that serve as chemoprotective compounds in plant biotic defense reactions and also exhibit strong anticancerogenic properties beneficial to human health. In a screen for the trans-activation potential of various transcription factors toward glucosinolate biosynthetic genes, we could identify the HAG1 (HIGH ALIPHATIC GLUCOSINOLATE 1, also referred to as MYB28) gene as a positive regulator of aliphatic methionine-derived glucosinolates. The content of aliphatic glucosinolates as well as transcript levels of aliphatic glucosinolate biosynthetic genes were elevated in gain-of-function mutants and decreased in HAG1 RNAi knock-down mutants. Pro(HAG1):GUS expression analysis revealed strong HAG1 promoter activity in generative organs and mature leaves of A. thaliana plants, the main sites of accumulation of aliphatic glucosinolates. Mechanical stimuli such as touch or wounding transiently induced HAG1/MYB28 expression in inflorescences of flowering plants, and HAG1/MYB28 over-expression reduced insect performance as revealed by weight gain assays with the generalist lepidopteran herbivore Spodoptera exigua. Expression of HAG1/MYB28 was significantly induced by glucose, indicating a novel transcriptional regulatory mechanism for the integration of carbohydrate availability upon biotic challenge. We hypothesize that HAG1/MYB28 is a novel regulator of aliphatic glucosinolate biosynthesis that controls the response to biotic challenges.

摘要

甲硫氨酸衍生的硫代葡萄糖苷属于一类植物次生代谢产物,在植物生物防御反应中作为化学保护化合物,并且还表现出对人类健康有益的强大抗癌特性。在筛选各种转录因子对硫代葡萄糖苷生物合成基因的反式激活潜力时,我们确定HAG1(高脂肪酸硫代葡萄糖苷1,也称为MYB28)基因为甲硫氨酸衍生的脂肪酸硫代葡萄糖苷的正调控因子。在功能获得型突变体中,脂肪酸硫代葡萄糖苷的含量以及脂肪酸硫代葡萄糖苷生物合成基因的转录水平升高,而在HAG1 RNAi敲低突变体中则降低。Pro(HAG1):GUS表达分析显示,HAG1启动子在拟南芥植物的生殖器官和成熟叶片中具有很强的活性,这些部位是脂肪酸硫代葡萄糖苷的主要积累部位。触摸或创伤等机械刺激会在开花植物的花序中短暂诱导HAG1/MYB28表达,并且通过多食性鳞翅目食草动物甜菜夜蛾的体重增加试验表明,HAG1/MYB28的过表达会降低昆虫的生长性能。葡萄糖显著诱导了HAG1/MYB28的表达,这表明在生物挑战时,碳水化合物可利用性整合存在一种新的转录调控机制。我们假设HAG1/MYB28是脂肪酸硫代葡萄糖苷生物合成的一种新型调控因子,可控制对生物挑战的反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验