Suppr超能文献

受拟南芥硫代葡萄糖苷生物合成调节因子的两个进化枝影响的转录本和代谢物网络。

The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators.

作者信息

Malitsky Sergey, Blum Eyal, Less Hadar, Venger Ilya, Elbaz Moshe, Morin Shai, Eshed Yuval, Aharoni Asaph

机构信息

Department of Plant Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.

出版信息

Plant Physiol. 2008 Dec;148(4):2021-49. doi: 10.1104/pp.108.124784. Epub 2008 Oct 1.

Abstract

In this study, transcriptomics and metabolomics data were integrated in order to examine the regulation of glucosinolate (GS) biosynthesis in Arabidopsis (Arabidopsis thaliana) and its interface with pathways of primary metabolism. Our genetic material for analyses were transgenic plants overexpressing members of two clades of genes (ALTERED TRYPTOPHAN REGULATION1 [ATR1]-like and MYB28-like) that regulate the aliphatic and indole GS biosynthetic pathways (AGs and IGs, respectively). We show that activity of these regulators is not restricted to the metabolic space surrounding GS biosynthesis but is tightly linked to more distal metabolic networks of primary metabolism. This suggests that with similarity to the regulators we have investigated here, other factors controlling pathways of secondary metabolism might also control core pathways of central metabolism. The relatively broad view of transcripts and metabolites altered in transgenic plants overexpressing the different factors underlined novel links of GS metabolism to additional metabolic pathways, including those of jasmonic acid, folate, benzoic acid, and various phenylpropanoids. It also revealed transcriptional and metabolic hubs in the "distal" network of metabolic pathways supplying precursors to GS biosynthesis and that overexpression of the ATR1-like clade genes has a much broader effect on the metabolism of indolic compounds than described previously. While the reciprocal, negative cross talk between the methionine and tryptophan pathways that generate GSs in Arabidopsis has been suggested previously, we now show that it is not restricted to AGs and IGs but includes additional metabolites, such as the phytoalexin camalexin. Combining the profiling data of transgenic lines with gene expression correlation analysis allowed us to propose a model of how the balance in the metabolic network is maintained by the GS biosynthesis regulators. It appears that ATR1/MYB34 is an important mediator between the gene activities of the two clades. While it is very similar to the ATR1-like clade members in terms of downstream gene targets, its expression is highly correlated with that of the MYB28-like clade members. Finally, we used the unique transgenic plants obtained here to show that AGs are likely more potent deterrents of the whitefly Bemisia tabaci compared with IGs. The influence on insect behavior raises an important question for future investigation of the functional aspect of our initial finding, which pointed to enriched expression of the MYB28-like clade genes in the abaxial domain of the Arabidopsis leaf.

摘要

在本研究中,整合了转录组学和代谢组学数据,以研究拟南芥中硫代葡萄糖苷(GS)生物合成的调控及其与初级代谢途径的界面。我们用于分析的遗传材料是过表达两个基因分支(分别调控脂肪族和吲哚族GS生物合成途径的ALTERED TRYPTOPHAN REGULATION1 [ATR1] - 样和MYB28 - 样)成员的转基因植物。我们表明,这些调控因子的活性不仅限于GS生物合成周围的代谢空间,而是与初级代谢中更远端的代谢网络紧密相连。这表明,与我们在此研究的调控因子类似,其他控制次生代谢途径的因素也可能控制中心代谢的核心途径。对过表达不同因子的转基因植物中改变的转录本和代谢物的相对广泛观察强调了GS代谢与其他代谢途径(包括茉莉酸、叶酸、苯甲酸和各种苯丙烷类代谢途径)的新联系。它还揭示了在为GS生物合成提供前体的代谢途径“远端”网络中的转录和代谢枢纽,并且ATR1 - 样基因分支的过表达对吲哚类化合物代谢的影响比先前描述的要广泛得多。虽然先前已提出在拟南芥中产生GS的甲硫氨酸和色氨酸途径之间存在相互的负向串扰,但我们现在表明,这种串扰不仅限于脂肪族和吲哚族GS,还包括其他代谢物,如植保素camalexin。将转基因系的谱数据与基因表达相关性分析相结合,使我们能够提出一个模型,说明GS生物合成调控因子如何维持代谢网络中的平衡。似乎ATR1/MYB34是两个基因分支的基因活性之间的重要介导因子。虽然它在下游基因靶点方面与ATR1 - 样基因分支成员非常相似,但其表达与MYB28 - 样基因分支成员的表达高度相关。最后,我们利用在此获得的独特转基因植物表明,与吲哚族GS相比,脂肪族GS可能是烟粉虱更有效的威慑物。对昆虫行为的影响为未来研究我们最初发现的功能方面提出了一个重要问题,该发现指出MYB28 - 样基因分支在拟南芥叶片背面区域中表达富集。

相似文献

1
The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators.
Plant Physiol. 2008 Dec;148(4):2021-49. doi: 10.1104/pp.108.124784. Epub 2008 Oct 1.
2
3
Novel insights into the function of Arabidopsis R2R3-MYB transcription factors regulating aliphatic glucosinolate biosynthesis.
Plant Cell Physiol. 2013 Aug;54(8):1335-44. doi: 10.1093/pcp/pct085. Epub 2013 Jun 20.
4
The Glucosinolate Biosynthetic Gene AOP2 Mediates Feed-back Regulation of Jasmonic Acid Signaling in Arabidopsis.
Mol Plant. 2015 Aug;8(8):1201-12. doi: 10.1016/j.molp.2015.03.001. Epub 2015 Mar 7.
5
DOF transcription factor AtDof1.1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis.
Plant J. 2006 Jul;47(1):10-24. doi: 10.1111/j.1365-313X.2006.02767.x. Epub 2006 Jun 1.
6
Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana.
Plant J. 2010 Apr 1;62(1):1-11. doi: 10.1111/j.1365-313X.2009.04118.x. Epub 2009 Dec 23.
7
The Arabidopsis ATR1 Myb transcription factor controls indolic glucosinolate homeostasis.
Plant Physiol. 2005 Jan;137(1):253-62. doi: 10.1104/pp.104.054395. Epub 2004 Dec 3.
9
The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana.
Plant J. 2007 Jun;50(5):886-901. doi: 10.1111/j.1365-313X.2007.03099.x. Epub 2007 Apr 25.

引用本文的文献

1
The impact of tropodithietic acid on microbial physiology under varying culture complexities.
mSphere. 2025 Aug 26;10(8):e0013825. doi: 10.1128/msphere.00138-25. Epub 2025 Jul 18.
2
Genetic responses of plants to urban environmental challenges.
Planta. 2025 Apr 4;261(5):102. doi: 10.1007/s00425-025-04678-1.
10
Genome-Wide Association Study of Glucosinolate Metabolites (mGWAS) in L.
Plants (Basel). 2023 Feb 1;12(3):639. doi: 10.3390/plants12030639.

本文引用的文献

1
Nature's assembly line: biosynthesis of simple phenylpropanoids and polyketides.
Plant J. 2008 May;54(4):750-62. doi: 10.1111/j.1365-313X.2008.03436.x.
2
Gene expression and metabolism in tomato fruit surface tissues.
Plant Physiol. 2008 Jun;147(2):823-51. doi: 10.1104/pp.108.116004. Epub 2008 Apr 25.
3
Auxin dynamics: the dazzling complexity of a small molecule's message.
Planta. 2008 Apr;227(5):929-41. doi: 10.1007/s00425-008-0710-8. Epub 2008 Feb 26.
6
Transcription factor AtDOF4;2 affects phenylpropanoid metabolism in Arabidopsis thaliana.
New Phytol. 2007;175(3):425-438. doi: 10.1111/j.1469-8137.2007.02129.x.
7
Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis.
Plant Cell. 2007 Jun;19(6):2039-52. doi: 10.1105/tpc.107.051383. Epub 2007 Jun 15.
8
9
The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana.
Plant J. 2007 Jun;50(5):886-901. doi: 10.1111/j.1365-313X.2007.03099.x. Epub 2007 Apr 25.
10
Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis.
Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6478-83. doi: 10.1073/pnas.0611629104. Epub 2007 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验