Suppr超能文献

肌肉几何形状会影响通过磁共振成像(MRI)测定前臂体积的准确性。

Muscle geometry affects accuracy of forearm volume determination by magnetic resonance imaging (MRI).

作者信息

Eng Carolyn M, Abrams Geoff D, Smallwood Laura R, Lieber Richard L, Ward Samuel R

机构信息

Department of Orthopaedic Surgery, University of California, San Diego, CA, USA.

出版信息

J Biomech. 2007;40(14):3261-6. doi: 10.1016/j.jbiomech.2007.04.005. Epub 2007 May 22.

Abstract

Upper extremity musculoskeletal modeling is becoming increasingly sophisticated, creating a growing need for subject-specific muscle size parameters. One method for determining subject-specific muscle volume is magnetic resonance imaging (MRI). The purpose of this study was to determine the validity of MRI-derived muscle volumes in the human forearm across a variety of muscle sizes and shapes. Seventeen cadaveric forearms were scanned using a fast-spoiled gradient echo pulse sequence with high isotropic spatial resolution (1mm(3) voxels) on a 3T MR system. Pronator teres (PT), extensor carpi radialis brevis (ECRB), extensor pollicis longus (EPL), flexor carpi ulnaris (FCU), and brachioradialis (BR) muscles were manually segmented allowing volume to be calculated. Forearms were then dissected, muscles isolated, and muscle masses obtained, which allowed computation of muscle volume. Intraclass correlation coefficients (ICC(2,1)) and absolute volume differences were used to compare measurement methods. There was excellent agreement between the anatomical and MRI-derived muscle volumes (ICC = 0.97, relative error = 12.8%) when all 43 muscles were considered together. When individual muscles were considered, there was excellent agreement between measurement methods for PT (ICC = 0.97, relative error = 8.4%), ECRB (ICC = 0.93, relative error = 7.7%), and FCU (ICC = 0.91, relative error = 9.8%), and fair agreement for EPL (ICC = 0.68, relative error = 21.6%) and BR (ICC = 0.93, relative error = 17.2%). Thus, while MRI-based measurements of muscle volume produce relatively small errors in some muscles, muscles with high surface area-to-volume ratios may predispose them to segmentation error, and, therefore, the accuracy of these measurements may be unacceptable.

摘要

上肢肌肉骨骼建模正变得越来越复杂,对特定个体的肌肉大小参数的需求也日益增长。一种确定特定个体肌肉体积的方法是磁共振成像(MRI)。本研究的目的是确定在各种肌肉大小和形状的情况下,MRI得出的人体前臂肌肉体积的有效性。在一台3T磁共振系统上,使用具有高各向同性空间分辨率(1mm³体素)的快速扰相梯度回波脉冲序列对17个尸体前臂进行扫描。手动分割旋前圆肌(PT)、桡侧腕短伸肌(ECRB)、拇长伸肌(EPL)、尺侧腕屈肌(FCU)和肱桡肌(BR),从而计算出体积。然后解剖前臂,分离肌肉并获取肌肉质量,进而计算肌肉体积。组内相关系数(ICC(2,1))和绝对体积差异用于比较测量方法。当将所有43块肌肉一起考虑时,解剖学测量的肌肉体积与MRI得出的肌肉体积之间具有极好的一致性(ICC = 0.97,相对误差 = 12.8%)。当考虑单个肌肉时,则PT(ICC = 0.97,相对误差 = 8.4%)、ECRB(ICC = 0.93,相对误差 = 7.7%)和FCU(ICC = 0.91,相对误差 = 9.8%)的测量方法之间具有极好的一致性,而EPL(ICC = 0.68,相对误差 = 21.6%)和BR(ICC = 0.93,相对误差 = 17.2%)的一致性一般。因此,虽然基于MRI的肌肉体积测量在某些肌肉中产生的误差相对较小,但表面积与体积比高的肌肉可能使其易出现分割误差,因此这些测量的准确性可能无法接受。

相似文献

1
Muscle geometry affects accuracy of forearm volume determination by magnetic resonance imaging (MRI).
J Biomech. 2007;40(14):3261-6. doi: 10.1016/j.jbiomech.2007.04.005. Epub 2007 May 22.
3
Reliability of in vivo determination of forearm muscle volume using 3.0 T magnetic resonance imaging.
J Magn Reson Imaging. 2010 May;31(5):1252-5. doi: 10.1002/jmri.22153.
6
Wrist tendon moment arms: Quantification by imaging and experimental techniques.
J Biomech. 2018 Feb 8;68:136-140. doi: 10.1016/j.jbiomech.2017.12.024. Epub 2017 Dec 24.
7
Pronator teres is an appropriate donor muscle for restoration of wrist and thumb extension.
J Hand Surg Am. 2005 Sep;30(5):1068-73. doi: 10.1016/j.jhsa.2005.04.016.
8
Is muscle structure influenced by genetical or functional factors? A study of three forearm muscles.
Acta Physiol Scand. 1982 Feb;114(2):277-81. doi: 10.1111/j.1748-1716.1982.tb06983.x.
10
Architecture of selected muscles of the arm and forearm: anatomy and implications for tendon transfer.
J Hand Surg Am. 1992 Sep;17(5):787-98. doi: 10.1016/0363-5023(92)90444-t.

引用本文的文献

4
Quantifying skeletal muscle volume and shape in humans using MRI: A systematic review of validity and reliability.
PLoS One. 2018 Nov 29;13(11):e0207847. doi: 10.1371/journal.pone.0207847. eCollection 2018.
5
Reliable femoral frame construction based on MRI dedicated to muscles position follow-up.
Med Biol Eng Comput. 2015 Oct;53(10):921-8. doi: 10.1007/s11517-015-1302-y. Epub 2015 May 8.
6
Muscle volume as a predictor of maximum force generating ability in the plantar flexors post-stroke.
Muscle Nerve. 2013 Dec;48(6):971-6. doi: 10.1002/mus.23835. Epub 2013 Sep 11.
7
Paretic muscle atrophy and non-contractile tissue content in individual muscles of the post-stroke lower extremity.
J Biomech. 2011 Nov 10;44(16):2741-6. doi: 10.1016/j.jbiomech.2011.09.001. Epub 2011 Sep 25.
8
In vivo MRI evaluation of anabolic steroid precursor growth effects in a guinea pig model.
Steroids. 2009 Aug;74(8):684-93. doi: 10.1016/j.steroids.2009.02.012. Epub 2009 Mar 20.
9
3D-patient-specific geometry of the muscles involved in knee motion from selected MRI images.
Med Biol Eng Comput. 2009 Jun;47(6):579-87. doi: 10.1007/s11517-009-0466-8. Epub 2009 Mar 10.
10
In vivo MRI quantification of individual muscle and organ volumes for assessment of anabolic steroid growth effects.
Steroids. 2008 Apr;73(4):430-40. doi: 10.1016/j.steroids.2007.12.011. Epub 2007 Dec 23.

本文引用的文献

1
Tendon transplantation for radial paralysis.
Br J Surg. 1946 Apr;34:358-64. doi: 10.1002/bjs.18003313210.
2
Density and hydration of fresh and fixed human skeletal muscle.
J Biomech. 2005 Nov;38(11):2317-20. doi: 10.1016/j.jbiomech.2004.10.001. Epub 2004 Dec 30.
3
4
Magnetic resonance imaging in quantitative analysis of rotator cuff muscle volume.
Clin Orthop Relat Res. 2003 Oct(415):104-10. doi: 10.1097/01.blo.0000092969.12414.e1.
5
A more efficient magnetic resonance imaging-based strategy for measuring quadriceps muscle volume.
Med Sci Sports Exerc. 2003 Mar;35(3):425-33. doi: 10.1249/01.MSS.0000053722.53302.D6.
6
Mechanical considerations in the design of surgical reconstructive procedures.
J Biomech. 2002 Aug;35(8):1039-45. doi: 10.1016/s0021-9290(02)00045-3.
7
Muscle volume is a major determinant of joint torque in humans.
Acta Physiol Scand. 2001 Aug;172(4):249-55. doi: 10.1046/j.1365-201x.2001.00867.x.
8
Muscle volume, MRI relaxation times (T2), and body composition after spaceflight.
J Appl Physiol (1985). 2000 Dec;89(6):2158-64. doi: 10.1152/jappl.2000.89.6.2158.
9
Lower limb skeletal muscle mass: development of dual-energy X-ray absorptiometry prediction model.
J Appl Physiol (1985). 2000 Oct;89(4):1380-6. doi: 10.1152/jappl.2000.89.4.1380.
10
Knee extensor strength, activation, and size in very elderly people following strength training.
Muscle Nerve. 1999 Jul;22(7):831-9. doi: 10.1002/(sici)1097-4598(199907)22:7<831::aid-mus4>3.0.co;2-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验