Srinivasan Lakshminarayan, Eden Uri T, Mitter Sanjoy K, Brown Emery N
Center for Nervous System Repair, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA.
J Neurophysiol. 2007 Oct;98(4):2456-75. doi: 10.1152/jn.01118.2006. Epub 2007 May 23.
Brain-driven interfaces depend on estimation procedures to convert neural signals to inputs for prosthetic devices that can assist individuals with severe motor deficits. Previous estimation procedures were developed on an application-specific basis. Here we report a coherent estimation framework that unifies these procedures and motivates new applications of prosthetic devices driven by action potentials, local field potentials (LFPs), electrocorticography (ECoG), electroencephalography (EEG), electromyography (EMG), or optical methods. The brain-driven interface is described as a probabilistic relationship between neural activity and components of a prosthetic device that may take on discrete or continuous values. A new estimation procedure is developed for action potentials, and a corresponding procedure is described for field potentials and optical measurements. We test our framework against dominant approaches in an arm reaching task using simulated traces of ensemble spiking activity from primary motor cortex (MI) and a wheelchair navigation task using simulated traces of EEG-band power. Adaptive filtering is incorporated to demonstrate performance under neuron death and discovery. Finally, we characterize performance under model misspecification using physiologically realistic history dependence in MI spiking. These simulated results predict that the unified framework outperforms previous approaches under various conditions, in the control of position and velocity, based on trajectory and endpoint mean squared errors.
脑驱动接口依赖于估计程序,将神经信号转换为可帮助严重运动功能障碍患者的假肢装置的输入。先前的估计程序是在特定应用的基础上开发的。在此,我们报告了一个连贯的估计框架,该框架统一了这些程序,并推动了由动作电位、局部场电位(LFP)、皮层脑电图(ECoG)、脑电图(EEG)、肌电图(EMG)或光学方法驱动的假肢装置的新应用。脑驱动接口被描述为神经活动与假肢装置组件之间的概率关系,这些组件可能具有离散或连续值。针对动作电位开发了一种新的估计程序,并针对场电位和光学测量描述了相应的程序。我们在手臂伸展任务中使用来自初级运动皮层(MI)的群体尖峰活动模拟轨迹,以及在轮椅导航任务中使用EEG频段功率模拟轨迹,将我们的框架与主导方法进行测试。纳入自适应滤波以展示在神经元死亡和发现情况下的性能。最后,我们使用MI尖峰中生理上现实的历史依赖性来表征模型错误指定情况下的性能。这些模拟结果预测,基于轨迹和端点均方误差,在各种条件下,统一框架在位置和速度控制方面优于先前的方法。