Agrawal Lokesh, Jin Qingwen, Altenburg Jeff, Meyer L, Tubiana R, Theodorou Ioannis, Alkhatib Ghalib
Indiana University School of Medicine, Department of Microbiology and Immunology, 635 Barnhill Drive, Room 420, Indianapolis, IN 46202, USA.
J Virol. 2007 Aug;81(15):8041-9. doi: 10.1128/JVI.00068-07. Epub 2007 May 23.
Human immunodeficiency virus type 1 (HIV-1) infection of individuals carrying the two alleles of the CCR5Delta32 mutation (CCR5(-/-)) has rarely been reported, but how the virus overcomes the CCR5Delta32 protective effect in these cases has not been delineated. We have investigated this in 6 infected (HIV(+)) and 25 HIV(-) CCR5(-/-) individuals. CD4(+) T lymphocytes isolated from HIV(-) CCR5(-/-) peripheral blood mononuclear cells (PBMCs) showed lower levels of CXCR4 expression that correlated with lower X4 Env-mediated fusion. Endogenous CCR5Delta32 protein was detected in all HIV(-) CCR5(-/-) PBMC samples (n = 25) but not in four of six unrelated HIV(+) CCR5(-/-) PBMC samples. Low levels were detected in another two HIV(+) CCR5(-/-) PBMC samples. The expression of adenovirus 5 (Ad5)-encoded CCR5Delta32 protein restored the protective effect in PBMCs from three HIV(+) CCR5(-/-) individuals but failed to restore the protective effect in PBMCs isolated from another three HIV(+) CCR5(-/-) individuals. In the latter samples, pulse-chase analyses demonstrated the disappearance of endogenous Ad5-encoded CCR5Delta32 protein and the accumulation of Ad5-encoded CCR5 during the chase periods. PBMCs isolated from CCR5(-/-) individuals showed resistance to primary X4 but were readily infected by a lab-adapted X4 strain. Low levels of Ad5-encoded CCR5Delta32 protein conferred resistance to primary X4 but not to lab-adapted X4 virus. These data provide strong support for the hypothesis that the CCR5Delta32 protein actively confers resistance to HIV-1 in vivo and suggest that the loss or reduction of CCR5Delta32 protein expression may account for HIV-1 infection of CCR5(-/-) individuals. The results also suggest that other cellular or virally induced factors may be involved in the stability of CCR5Delta32 protein.
携带CCR5Δ32突变两个等位基因(CCR5(-/-))的个体感染1型人类免疫缺陷病毒(HIV-1)的情况鲜有报道,但在这些病例中病毒如何克服CCR5Δ32的保护作用尚未明确。我们对6名受感染(HIV(+))和25名HIV(-)的CCR5(-/-)个体进行了研究。从HIV(-) CCR5(-/-)外周血单核细胞(PBMC)中分离出的CD4(+) T淋巴细胞显示CXCR4表达水平较低,这与较低的X4包膜介导的融合相关。在所有HIV(-) CCR5(-/-) PBMC样本(n = 25)中检测到内源性CCR5Δ32蛋白,但在6个不相关的HIV(+) CCR5(-/-) PBMC样本中的4个中未检测到。在另外2个HIV(+) CCR5(-/-) PBMC样本中检测到低水平表达。腺病毒5(Ad5)编码的CCR5Δ32蛋白的表达恢复了来自3名HIV(+) CCR5(-/-)个体的PBMC中的保护作用,但未能恢复从另外3名HIV(+) CCR5(-/-)个体分离出的PBMC中的保护作用。在后者的样本中,脉冲追踪分析表明在追踪期间内源性Ad5编码的CCR5Δ32蛋白消失,而Ad5编码的CCR5积累。从CCR5(-/-)个体分离出的PBMC对原发性X4具有抗性,但很容易被实验室适应的X4毒株感染。低水平的Ad5编码的CCR5Δ32蛋白赋予对原发性X4的抗性,但对实验室适应的X4病毒没有抗性。这些数据为CCR5Δ32蛋白在体内积极赋予对HIV-1的抗性这一假设提供了有力支持,并表明CCR5Δ32蛋白表达的丧失或减少可能是CCR5(-/-)个体感染HIV-1的原因。结果还表明其他细胞或病毒诱导的因素可能参与CCR5Δ32蛋白的稳定性。