Jiang Wei, Yun Danny, Saleh Lana, Barr Eric W, Xing Gang, Hoffart Lee M, Maslak Monique-Anne, Krebs Carsten, Bollinger J Martin
Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
Science. 2007 May 25;316(5828):1188-91. doi: 10.1126/science.1141179.
In a conventional class I ribonucleotide reductase (RNR), a diiron(II/II) cofactor in the R2 subunit reacts with oxygen to produce a diiron(III/IV) intermediate, which generates a stable tyrosyl radical (Y*). The Y* reversibly oxidizes a cysteine residue in the R1 subunit to a cysteinyl radical (C*), which abstracts the 3'-hydrogen of the substrate to initiate its reduction. The RNR from Chlamydia trachomatis lacks the Y*, and it had been proposed that the diiron(III/IV) complex in R2 directly generates the C* in R1. By enzyme activity measurements and spectroscopic methods, we show that this RNR actually uses a previously unknown stable manganese(IV)/iron(III) cofactor for radical initiation.
在传统的I类核糖核苷酸还原酶(RNR)中,R2亚基中的双铁(II/II)辅因子与氧气反应生成双铁(III/IV)中间体,该中间体产生稳定的酪氨酸自由基(Y*)。Y将R1亚基中的半胱氨酸残基可逆地氧化为半胱氨酰自由基(C),C夺取底物的3'-氢以启动其还原反应。沙眼衣原体的RNR缺乏Y,有人提出R2中的双铁(III/IV)复合物直接在R1中产生C*。通过酶活性测量和光谱方法,我们表明这种RNR实际上使用一种以前未知的稳定的锰(IV)/铁(III)辅因子来引发自由基。