Suppr超能文献

核糖核苷酸还原酶中自由基引发金属辅因子的还原态Mn(III)/Fe(III)中间体的结构解析

Structural Elucidation of the Reduced Mn(III)/Fe(III) Intermediate of the Radical-Initiating Metallocofactor in Ribonucleotide Reductase.

作者信息

Martinie Ryan J, Livada Jovan, Kothiya Nyaari, Bollinger J Martin, Krebs Carsten, Silakov Alexey

机构信息

Department of Chemistry, Hamilton College, Clinton, New York 13323, United States.

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

出版信息

Biochemistry. 2025 Mar 4;64(5):1157-1167. doi: 10.1021/acs.biochem.4c00692. Epub 2025 Feb 17.

Abstract

Ribonucleotide reductases (RNRs) are the sole source of deoxyribonucleotides for DNA synthesis and repair across all organisms and carry out their reaction via a radical mechanism. RNR from generates its turnover-initiating cysteinyl radical by long-range reduction of a Mn(IV)/Fe(III) cofactor, producing a Mn(III)/Fe(III) intermediate. Herein, we characterize the protonation states of the inorganic ligands in this reduced state using advanced pulse electron paramagnetic resonance (EPR) spectroscopy and H-isotope labeling. A strongly coupled deuteron is observed by hyperfine sublevel correlation (HYSCORE) spectroscopy experiments and indicates the presence of a bridging hydroxo ligand. Isotope-dependent EPR line broadening analysis and the magnitude of the estimated Mn-Fe exchange coupling constant together suggest a μ-oxo/μ-hydroxo core. Two distinct signals detected in electron-nuclear double resonance (ENDOR) spectra are attributable to less strongly coupled hydrons of a terminal water ligand to Mn(III). Together, these experiments imply that the reduced cofactor has a mixed μ-oxo/μ-hydroxo core with a terminal water ligand on Mn(III). This structural assignment sheds light generally on the reactivity of Mn/Fe heterobimetallic sites and, more specifically, on the proton-coupling in the electron transfer that initiates ribonucleotide reduction in this subclass of RNRs.

摘要

核糖核苷酸还原酶(RNRs)是所有生物体中DNA合成和修复所需脱氧核糖核苷酸的唯一来源,并通过自由基机制进行反应。来自[具体来源未给出]的RNR通过对Mn(IV)/Fe(III)辅因子的远程还原产生其启动周转的半胱氨酰自由基,生成Mn(III)/Fe(III)中间体。在此,我们使用先进的脉冲电子顺磁共振(EPR)光谱和氢同位素标记来表征该还原态下无机配体的质子化状态。通过超精细能级相关(HYSCORE)光谱实验观察到一个强耦合的氘核,表明存在一个桥连羟基配体。同位素依赖性EPR线宽分析和估计的Mn-Fe交换耦合常数的大小共同表明存在一个μ-氧/μ-羟基核心。在电子-核双共振(ENDOR)光谱中检测到的两个不同信号归因于与Mn(III)相连的末端水配体中耦合较弱的氢核。总之,这些实验表明还原的辅因子具有一个混合的μ-氧/μ-羟基核心,在Mn(III)上有一个末端水配体。这一结构归属总体上揭示了Mn/Fe异双核位点的反应性,更具体地说,揭示了在这类RNRs中启动核糖核苷酸还原的电子转移中的质子耦合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3836/11883743/5097d0a7f63e/bi4c00692_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验