Suppr超能文献

双稳态反应扩散模型中的孤子行为。

Soliton behaviour in a bistable reaction diffusion model.

作者信息

Varea C, Hernández D, Barrio R A

机构信息

Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, 01000 México, DF, México.

出版信息

J Math Biol. 2007 Jun;54(6):797-813. doi: 10.1007/s00285-007-0071-0. Epub 2007 Feb 15.

Abstract

We analyze a generic reaction-diffusion model that contains the important features of Turing systems and that has been extensively used in the past to model biological interesting patterns. This model presents various fixed points. Analysis of this model has been made in the past only in the case when there is only a single fixed point, and a phase diagram of all the possible instabilities shows that there is a place where a Turing-Hopf bifurcation occurs producing oscillating Turing patterns. In here we focus on the interesting situation of having several fixed points, particularly when one unstable point is in between two equally stable points. We show that the solutions of this bistable system are traveling front waves, or solitons. The predictions and results are tested by performing extensive numerical calculations in one and two dimensions. The dynamics of these solitons is governed by a well defined spatial scale, and collisions and interactions between solitons depend on this scale. In certain regions of parameter space the wave fronts can be stationary, forming a pattern resembling spatial chaos. The patterns in two dimensions are particularly interesting because they can present a coherent dynamics with pseudo spiral rotations that simulate the myocardial beat quite closely. We show that our simple model can produce complicated spatial patterns with many different properties, and could be used in applications in many different fields.

摘要

我们分析了一个通用的反应扩散模型,该模型包含图灵系统的重要特征,并且过去已被广泛用于模拟生物学中有趣的模式。这个模型呈现出各种不动点。过去仅在只有一个不动点的情况下对该模型进行了分析,所有可能不稳定性的相图表明,存在一个发生图灵 - 霍普夫分岔的地方,会产生振荡的图灵模式。在这里,我们关注具有多个不动点的有趣情况,特别是当一个不稳定点位于两个同等稳定的点之间时。我们表明,这个双稳系统的解是行波前波或孤子。通过在一维和二维中进行广泛的数值计算来检验这些预测和结果。这些孤子的动力学由一个定义明确的空间尺度控制,孤子之间的碰撞和相互作用取决于这个尺度。在参数空间的某些区域,波前可以是静止的,形成类似空间混沌的模式。二维模式特别有趣,因为它们可以呈现出具有伪螺旋旋转的相干动力学,非常接近地模拟心肌搏动。我们表明,我们的简单模型可以产生具有许多不同特性的复杂空间模式,并且可用于许多不同领域的应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验