Arrojo S, Benito Y
Investigador, Grupo Tecnologías del Agua, CIEMAT, Av. Complutense 22, 28040 Madrid, Spain.
Ultrason Sonochem. 2008 Mar;15(3):203-11. doi: 10.1016/j.ultsonch.2007.03.007. Epub 2007 Apr 2.
The optimization of hydrodynamic cavitation as an AOP requires identifying the key parameters and studying their effects on the process. Specific simulations of hydrodynamic bubbles reveal that time scales play a major role on the process. Rarefaction/compression periods generate a number of opposing effects which have demonstrated to be quantitatively different from those found in ultrasonic cavitation. Hydrodynamic cavitation can be upscaled and offers an energy efficient way of generating cavitation. On the other hand, the large characteristic time scales hinder bubble collapse and generate a low number of cavitation cycles per unit time. By controlling the pressure pulse through a flexible cavitation chamber design these limitations can be partially compensated. The chemical processes promoted by this technique are also different from those found in ultrasonic cavitation. Properties such as volatility or hydrophobicity determine the potential applicability of HC and therefore have to be taken into account.
将水力空化作为一种不良结局途径进行优化,需要确定关键参数并研究它们对该过程的影响。对水力气泡的具体模拟表明,时间尺度对该过程起着主要作用。稀疏/压缩周期会产生许多相反的效应,这些效应已被证明在数量上与超声空化中的效应不同。水力空化可以扩大规模,并提供一种产生空化的节能方式。另一方面,较大的特征时间尺度会阻碍气泡坍塌,并导致单位时间内的空化循环次数较少。通过灵活的空化室设计来控制压力脉冲,可以部分弥补这些限制。该技术促进的化学过程也与超声空化中的不同。挥发性或疏水性等性质决定了水力空化的潜在适用性,因此必须予以考虑。