Valdés Julio J, Barton Alan J
National Research Council, Institute for Information Technology, Ottawa, Ontario, Canada.
Neural Netw. 2007 May;20(4):498-508. doi: 10.1016/j.neunet.2007.04.009. Epub 2007 May 3.
A method for the construction of virtual reality spaces for visual data mining using multi-objective optimization with genetic algorithms on nonlinear discriminant (NDA) neural networks is presented. Two neural network layers (the output and the last hidden) are used for the construction of simultaneous solutions for: (i) a supervised classification of data patterns and (ii) an unsupervised similarity structure preservation between the original data matrix and its image in the new space. A set of spaces are constructed from selected solutions along the Pareto front. This strategy represents a conceptual improvement over spaces computed by single-objective optimization. In addition, genetic programming (in particular gene expression programming) is used for finding analytic representations of the complex mappings generating the spaces (a composition of NDA and orthogonal principal components). The presented approach is domain independent and is illustrated via application to the geophysical prospecting of caves.
提出了一种利用非线性判别(NDA)神经网络上的遗传算法进行多目标优化来构建用于视觉数据挖掘的虚拟现实空间的方法。两个神经网络层(输出层和最后一个隐藏层)用于同时构建以下两个问题的解决方案:(i)数据模式的监督分类;(ii)原始数据矩阵与其在新空间中的图像之间无监督的相似性结构保留。沿着帕累托前沿从选定的解决方案中构建一组空间。该策略相对于通过单目标优化计算出的空间而言是一种概念上的改进。此外,遗传编程(特别是基因表达式编程)用于找到生成这些空间的复杂映射(NDA和正交主成分的组合)的解析表示。所提出的方法与领域无关,并通过应用于洞穴地球物理勘探进行了说明。