Whitcher Brandon, Wisco Jonathan J, Hadjikhani Nouchine, Tuch David S
Clinical Imaging Centre, GlaxoSmithKline, Hammersmith Hospital, London, UK.
Magn Reson Med. 2007 Jun;57(6):1065-74. doi: 10.1002/mrm.21229.
Diffusion tensor imaging (DTI) provides a powerful tool for identifying white matter (WM) alterations in clinical populations. The prevalent method for group-level analysis of DTI is statistical comparison of the diffusion tensor fractional anisotropy (FA) metric. The FA metric, however, does not capture the full orientational information contained in the diffusion tensor. For example, the FA test is incapable of detecting group-level differences in diffusion orientation when the level of anisotropy is unaffected. Here, we apply multivariate hypothesis testing procedures to the elements of the diffusion tensor as an alternative to univariate testing using FA. Both parametric and nonparametric tests are proposed with each choice carrying specific assumptions about the diffusion tensor model. Of particular interest is the Cramér test, which works on Euclidean interpoint distances and can be readily adapted to a specific non-Euclidean framework by applying matrix logarithms to the diffusion tensors. Using Monte Carlo simulations, we show that multivariate tests can detect diffusion tensor principal eigenvector differences of 15 degrees with up to 80-90% power under typical design conditions. We also show that some multivariate tests are more sensitive to FA differences, when compared to a univariate test on FA, even if there is no principal eigenvector difference. The Cramér test, using the Euclidean interpoint distances, performed best under both simulation scenarios. When applying the Cramér test of the diffusion tensor in a clinical population with a history of migraine, a 169% increase was observed in the volume of a significant cluster compared to the univariate FA test.
扩散张量成像(DTI)为识别临床人群中的白质(WM)改变提供了一个强大的工具。DTI组水平分析的常用方法是对扩散张量分数各向异性(FA)指标进行统计比较。然而,FA指标并未捕捉到扩散张量中包含的全部方向信息。例如,当各向异性水平未受影响时,FA测试无法检测到扩散方向上的组水平差异。在此,我们将多变量假设检验程序应用于扩散张量的元素,作为使用FA进行单变量检验的替代方法。我们提出了参数检验和非参数检验,每种选择都对扩散张量模型有特定假设。特别值得关注的是克莱默检验,它基于欧几里得点间距离,通过对扩散张量应用矩阵对数,可以很容易地适应特定的非欧几里得框架。通过蒙特卡罗模拟,我们表明在典型设计条件下,多变量检验能够以高达80 - 90%的功效检测出15度的扩散张量主特征向量差异。我们还表明,与对FA进行单变量检验相比,即使没有主特征向量差异,一些多变量检验对FA差异也更敏感。使用欧几里得点间距离的克莱默检验在两种模拟场景下表现最佳。在对有偏头痛病史的临床人群应用扩散张量的克莱默检验时,与单变量FA检验相比,显著簇的体积增加了169%。