Seo Dong-Il, Moon Byung-Ro
School of Computer Science & Engineering, Seoul National University, Sillim-dong, Gwanak-gu, Seoul, 151-744 Korea.
Evol Comput. 2007 Summer;15(2):169-98. doi: 10.1162/evco.2007.15.2.169.
In optimization problems, the contribution of a variable to fitness often depends on the states of other variables. This phenomenon is referred to as epistasis or linkage. In this paper, we show that a new theory of epistasis can be established on the basis of Shannon's information theory. From this, we derive a new epistasis measure called entropic epistasis and some theoretical results. We also provide experimental results verifying the measure and showing how it can be used for designing efficient evolutionary algorithms.
在优化问题中,一个变量对适应度的贡献通常取决于其他变量的状态。这种现象被称为上位性或连锁。在本文中,我们表明可以在香农信息论的基础上建立一种新的上位性理论。由此,我们推导出一种称为熵上位性的新上位性度量以及一些理论结果。我们还提供了实验结果,验证了该度量并展示了它如何用于设计高效的进化算法。