Ivanovska Irena, Wuite Gijs, Jönsson Bengt, Evilevitch Alex
Physics of Complex Systems, Division of Physics and Astronomy, Vrije Universiteit, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9603-8. doi: 10.1073/pnas.0703166104. Epub 2007 May 29.
dsDNA in bacteriophages is highly stressed and exerts internal pressures of many atmospheres (1 atm = 101.3 kPa) on the capsid walls. We investigate the correlation between packaged DNA length in lambda phage (78-100% of WT DNA) and capsid strength by using an atomic force microscope indentation technique. We show that phages with WT DNA are twice as strong as shorter genome mutants, which behave like empty capsids, regardless of high internal pressure. Our analytical model of DNA-filled capsid deformation shows that, because of DNA-hydrating water molecules, an osmotic pressure exists inside capsids that increases exponentially when the packaged DNA density is close to WT phage. This osmotic pressure raises the WT capsid strength and is approximately equal to the maximum breaking force of empty shells. This result suggests that the strength of the shells limits the maximal packaged genome length. Moreover, it implies an evolutionary optimization of WT phages allowing them to survive greater external mechanical stresses in nature.
噬菌体中的双链DNA承受着巨大的压力,对衣壳壁施加着许多大气压的内部压力(1个大气压 = 101.3千帕)。我们使用原子力显微镜压痕技术研究了λ噬菌体中包装的DNA长度(野生型DNA的78 - 100%)与衣壳强度之间的相关性。我们发现,具有野生型DNA的噬菌体的强度是较短基因组突变体的两倍,这些突变体的行为类似于空衣壳,无论内部压力有多高。我们对充满DNA的衣壳变形的分析模型表明,由于DNA水化水分子的存在,衣壳内部存在渗透压,当包装的DNA密度接近野生型噬菌体时,渗透压呈指数增加。这种渗透压提高了野生型衣壳的强度,并且大约等于空壳的最大断裂力。这一结果表明,衣壳的强度限制了最大包装基因组长度。此外,这意味着野生型噬菌体在进化上进行了优化,使其能够在自然界中承受更大的外部机械应力。