Luo Minkui, Singh Vipender, Taylor Erika A, Schramm Vern L
Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
J Am Chem Soc. 2007 Jun 27;129(25):8008-17. doi: 10.1021/ja072122y. Epub 2007 May 31.
Adenosine deaminases (ADAs) from human, bovine, and Plasmodium falciparum sources were analyzed by kinetic isotope effects (KIEs) and shown to have distinct but related transition states. Human adenosine deaminase (HsADA) is present in most mammalian cells and is involved in B- and T-cell development. The ADA from Plasmodium falciparum (PfADA) is essential in this purine auxotroph, and its inhibition is expected to have therapeutic effects for malaria. Therefore, ADA is of continuing interest for inhibitor design. Stable structural mimics of ADA transition states are powerful inhibitors. Here we report the transition-state structures of PfADA, HsADA, and bovine ADA (BtADA) solved using competitive kinetic isotope effects (KIE) and density functional calculations. Adenines labeled at [6-13C], [6-15N], [6-13C, 6-15N], and [1-15N] were synthesized and enzymatically coupled with [1'-14C] ribose to give isotopically labeled adenosines as ADA substrates for KIE analysis. [6-13C], [6-15N], and [1-15N]adenosines reported intrinsic KIE values of (1.010, 1.011, 1.009), (1.005, 1.005, 1.002), and (1.004, 1.001, 0.995) for PfADA, HsADA, and BtADA, respectively. The differences in intrinsic KIEs reflect structural alterations in the transition states. The [1-15N] KIEs and computational modeling results indicate that PfADA, HsADA, and BtADA adopt early SNAr transition states, where N1 protonation is partial and the bond order to the attacking hydroxyl nucleophile is nearly complete. The key structural variation among PfADA, HsADA, and BtADA transition states lies in the degree of N1 protonation with the decreased bond lengths of 1.92, 1.55, and 1.28 A, respectively. Thus, PfADA has the earliest and BtADA has the most developed transition state. This conclusion is consistent with the 20-36-fold increase of kcat in comparing PfADA with HsADA and BtADA.
对来自人类、牛和恶性疟原虫的腺苷脱氨酶(ADA)进行了动力学同位素效应(KIE)分析,结果表明它们具有不同但相关的过渡态。人类腺苷脱氨酶(HsADA)存在于大多数哺乳动物细胞中,参与B细胞和T细胞的发育。恶性疟原虫的ADA(PfADA)在这种嘌呤营养缺陷型中至关重要,预计其抑制作用对疟疾具有治疗效果。因此,ADA一直是抑制剂设计的研究热点。ADA过渡态的稳定结构模拟物是强大的抑制剂。在此,我们报告了使用竞争动力学同位素效应(KIE)和密度泛函计算解析得到的PfADA、HsADA和牛ADA(BtADA)的过渡态结构。合成了在[6-13C]、[6-15N]、[6-13C, 6-15N]和[1-15N]处标记的腺嘌呤,并将其与[1'-14C]核糖进行酶促偶联,得到同位素标记的腺苷作为ADA底物用于KIE分析。[6-13C]、[6-15N]和[1-15N]腺苷分别报告了PfADA、HsADA和BtADA的内在KIE值为(1.010, 1.011, 1.009)、(1.005, 1.005, 1.002)和(1.004, 1.001, 0.995)。内在KIE的差异反映了过渡态的结构变化。[1-15N] KIE和计算建模结果表明,PfADA、HsADA和BtADA采用早期的SNAr过渡态,其中N1质子化是部分的,与进攻的羟基亲核试剂的键级几乎完全形成。PfADA、HsADA和BtADA过渡态之间的关键结构差异在于N1质子化程度,其键长分别减少了1.92、1.55和1.28 Å。因此,PfADA具有最早的过渡态而BtADA具有最发达的过渡态。这一结论与将PfADA与HsADA和BtADA相比时kcat增加20 - 36倍是一致的。