Suppr超能文献

融合决定因素的特征表明,E1和E2糖蛋白的三个离散区域都参与了丙型肝炎病毒的膜融合过程。

Characterization of fusion determinants points to the involvement of three discrete regions of both E1 and E2 glycoproteins in the membrane fusion process of hepatitis C virus.

作者信息

Lavillette Dimitri, Pécheur Eve-Isabelle, Donot Peggy, Fresquet Judith, Molle Jennifer, Corbau Romuald, Dreux Marlène, Penin François, Cosset François-Loïc

机构信息

Université de Lyon, IFR 128, F-69007 Lyon, France.

出版信息

J Virol. 2007 Aug;81(16):8752-65. doi: 10.1128/JVI.02642-06. Epub 2007 May 30.

Abstract

Infection of eukaryotic cells by enveloped viruses requires the merging of viral and cellular membranes. Highly specific viral surface glycoproteins, named fusion proteins, catalyze this reaction by overcoming inherent energy barriers. Hepatitis C virus (HCV) is an enveloped virus that belongs to the genus Hepacivirus of the family Flaviviridae. Little is known about the molecular events that mediate cell entry and membrane fusion for HCV, although significant progress has been made due to recent developments in infection assays. Here, using infectious HCV pseudoparticles (HCVpp), we investigated the molecular basis of HCV membrane fusion. By searching for classical features of fusion peptides through the alignment of sequences from various HCV genotypes, we identified six regions of HCV E1 and E2 glycoproteins that present such characteristics. We introduced conserved and nonconserved amino acid substitutions in these regions and analyzed the phenotype of HCVpp generated with mutant E1E2 glycoproteins. This was achieved by (i) quantifying the infectivity of the pseudoparticles, (ii) studying the incorporation of E1E2 and their capacity to mediate receptor binding, and (iii) determining their fusion capacity in cell-cell and liposome/HCVpp fusion assays. We propose that at least three of these regions (i.e., at positions 270 to 284, 416 to 430, and 600 to 620) play a role in the membrane fusion process. These regions may contribute to the merging of viral and cellular membranes either by interacting directly with lipid membranes or by assisting the fusion process through their involvement in the conformational changes of the E1E2 complex at low pH.

摘要

包膜病毒感染真核细胞需要病毒膜与细胞膜融合。名为融合蛋白的高度特异性病毒表面糖蛋白通过克服内在能量障碍来催化这一反应。丙型肝炎病毒(HCV)是一种包膜病毒,属于黄病毒科肝炎病毒属。尽管由于感染检测方法的最新进展已取得显著进展,但对于介导HCV细胞进入和膜融合的分子事件仍知之甚少。在这里,我们使用传染性HCV假颗粒(HCVpp)研究了HCV膜融合的分子基础。通过对各种HCV基因型序列进行比对来寻找融合肽的经典特征,我们确定了HCV E1和E2糖蛋白具有这些特征的六个区域。我们在这些区域引入了保守和非保守氨基酸替换,并分析了用突变E1E2糖蛋白产生的HCVpp的表型。这是通过以下方式实现的:(i)量化假颗粒的感染性,(ii)研究E1E2的掺入及其介导受体结合的能力,以及(iii)在细胞-细胞和脂质体/HCVpp融合试验中确定它们的融合能力。我们提出,这些区域中至少有三个(即270至284位、416至430位和600至620位)在膜融合过程中发挥作用。这些区域可能通过直接与脂质膜相互作用,或通过参与低pH下E1E2复合物的构象变化来协助融合过程,从而促进病毒膜与细胞膜的融合。

相似文献

2
Hepatitis C Virus Envelope Glycoprotein E1 Forms Trimers at the Surface of the Virion.
J Virol. 2015 Oct;89(20):10333-46. doi: 10.1128/JVI.00991-15. Epub 2015 Aug 5.
6
Analysis of a conserved RGE/RGD motif in HCV E2 in mediating entry.
Virol J. 2009 Jan 26;6:12. doi: 10.1186/1743-422X-6-12.
7
Identification of new functional regions in hepatitis C virus envelope glycoprotein E2.
J Virol. 2011 Feb;85(4):1777-92. doi: 10.1128/JVI.02170-10. Epub 2010 Dec 8.

引用本文的文献

1
Respiratory syncytial virus fuses with plasma membrane to infect primary cultures of bronchial epithelial cells.
Front Microbiol. 2025 Feb 26;16:1498955. doi: 10.3389/fmicb.2025.1498955. eCollection 2025.
2
The hepatitis C virus envelope protein complex is a dimer of heterodimers.
Nature. 2024 Sep;633(8030):704-709. doi: 10.1038/s41586-024-07783-5. Epub 2024 Sep 4.
3
Structures of the Hepaci-, Pegi-, and Pestiviruses envelope proteins suggest a novel membrane fusion mechanism.
PLoS Biol. 2023 Jul 11;21(7):e3002174. doi: 10.1371/journal.pbio.3002174. eCollection 2023 Jul.
4
Hepatitis C Virus-Lipid Interplay: Pathogenesis and Clinical Impact.
Biomedicines. 2023 Jan 19;11(2):271. doi: 10.3390/biomedicines11020271.
5
Host Cell Receptors Implicated in the Cellular Tropism of BVDV.
Viruses. 2022 Oct 20;14(10):2302. doi: 10.3390/v14102302.
6
Sites of vulnerability in HCV E1E2 identified by comprehensive functional screening.
Cell Rep. 2022 May 24;39(8):110859. doi: 10.1016/j.celrep.2022.110859.
7
Structural basis of synergistic neutralization of Crimean-Congo hemorrhagic fever virus by human antibodies.
Science. 2022 Jan 7;375(6576):104-109. doi: 10.1126/science.abl6502. Epub 2021 Nov 18.
8
Identification and Characteristics of Fusion Peptides Derived From Enveloped Viruses.
Front Chem. 2021 Aug 23;9:689006. doi: 10.3389/fchem.2021.689006. eCollection 2021.
9
Small-Molecule Inhibition of Viral Fusion Glycoproteins.
Annu Rev Virol. 2021 Sep 29;8(1):459-489. doi: 10.1146/annurev-virology-022221-063725. Epub 2021 Jul 1.

本文引用的文献

2
Claudin-1 is a hepatitis C virus co-receptor required for a late step in entry.
Nature. 2007 Apr 12;446(7137):801-5. doi: 10.1038/nature05654. Epub 2007 Feb 25.
3
Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G.
Science. 2007 Feb 9;315(5813):843-8. doi: 10.1126/science.1135710.
4
Hepatitis C virus entry: molecular biology and clinical implications.
Hepatology. 2006 Sep;44(3):527-35. doi: 10.1002/hep.21321.
5
Viral and cellular determinants of the hepatitis C virus envelope-heparan sulfate interaction.
J Virol. 2006 Nov;80(21):10579-90. doi: 10.1128/JVI.00941-06. Epub 2006 Aug 23.
8
Crystal structure of glycoprotein B from herpes simplex virus 1.
Science. 2006 Jul 14;313(5784):217-20. doi: 10.1126/science.1126548.
9
Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G.
Science. 2006 Jul 14;313(5784):187-91. doi: 10.1126/science.1127683.
10
Hepatitis C virus entry depends on clathrin-mediated endocytosis.
J Virol. 2006 Jul;80(14):6964-72. doi: 10.1128/JVI.00024-06.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验