Falson Pierre, Bartosch Birke, Alsaleh Khaled, Tews Birke Andrea, Loquet Antoine, Ciczora Yann, Riva Laura, Montigny Cédric, Montpellier Claire, Duverlie Gilles, Pécheur Eve-Isabelle, le Maire Marc, Cosset François-Loïc, Dubuisson Jean, Penin François
Bases Moléculaires et Structurales des Systèmes Infectieux, Institut de Biologie et Chimie des Protéines, UMR 5086, CNRS, LabEx Ecofect, University of Lyon, Lyon, France.
CIRI-International Center for Infectiology Research, INSERM U1111, Ecole Normale Supérieure, CNRS UMR 5308, LabEx Ecofect, University of Lyon, Lyon, France.
J Virol. 2015 Oct;89(20):10333-46. doi: 10.1128/JVI.00991-15. Epub 2015 Aug 5.
In hepatitis C virus (HCV)-infected cells, the envelope glycoproteins E1 and E2 assemble as a heterodimer. To investigate potential changes in the oligomerization of virion-associated envelope proteins, we performed SDS-PAGE under reducing conditions but without thermal denaturation. This revealed the presence of SDS-resistant trimers of E1 in the context of cell-cultured HCV (HCVcc) as well as in the context of HCV pseudoparticles (HCVpp). The formation of E1 trimers was found to depend on the coexpression of E2. To further understand the origin of E1 trimer formation, we coexpressed in bacteria the transmembrane (TM) domains of E1 (TME1) and E2 (TME2) fused to reporter proteins and analyzed the fusion proteins by SDS-PAGE and Western blotting. As expected for strongly interacting TM domains, TME1-TME2 heterodimers resistant to SDS were observed. These analyses also revealed homodimers and homotrimers of TME1, indicating that such complexes are stable species. The N-terminal segment of TME1 exhibits a highly conserved GxxxG sequence, a motif that is well documented to be involved in intramembrane protein-protein interactions. Single or double mutations of the glycine residues (Gly354 and Gly358) in this motif markedly decreased or abrogated the formation of TME1 homotrimers in bacteria, as well as homotrimers of E1 in both HCVpp and HCVcc systems. A concomitant loss of infectivity was observed, indicating that the trimeric form of E1 is essential for virus infectivity. Taken together, these results indicate that E1E2 heterodimers form trimers on HCV particles, and they support the hypothesis that E1 could be a fusion protein.
HCV glycoproteins E1 and E2 play an essential role in virus entry into liver cells as well as in virion morphogenesis. In infected cells, these two proteins form a complex in which E2 interacts with cellular receptors, whereas the function of E1 remains poorly understood. However, recent structural data suggest that E1 could be the protein responsible for the process of fusion between viral and cellular membranes. Here we investigated the oligomeric state of HCV envelope glycoproteins. We demonstrate that E1 forms functional trimers after virion assembly and that in addition to the requirement for E2, a determinant for this oligomerization is present in a conserved GxxxG motif located within the E1 transmembrane domain. Taken together, these results indicate that a rearrangement of E1E2 heterodimer complexes likely occurs during the assembly of HCV particles to yield a trimeric form of the E1E2 heterodimer. Gaining structural information on this trimer will be helpful for the design of an anti-HCV vaccine.
在丙型肝炎病毒(HCV)感染的细胞中,包膜糖蛋白E1和E2组装成异二聚体。为了研究病毒体相关包膜蛋白寡聚化的潜在变化,我们在还原条件下但未进行热变性的情况下进行了SDS-PAGE。这揭示了在细胞培养的HCV(HCVcc)以及HCV假颗粒(HCVpp)的情况下存在对SDS抗性的E1三聚体。发现E1三聚体的形成取决于E2的共表达。为了进一步了解E1三聚体形成的起源,我们在细菌中共表达了与报告蛋白融合的E1跨膜(TM)结构域(TME1)和E2(TME2),并通过SDS-PAGE和蛋白质印迹分析了融合蛋白。正如强相互作用的TM结构域所预期的那样,观察到了对SDS抗性的TME1-TME2异二聚体。这些分析还揭示了TME1的同二聚体和同三聚体,表明这些复合物是稳定的物种。TME1的N端片段表现出高度保守的GxxxG序列,该基序已被充分证明参与膜内蛋白质-蛋白质相互作用。该基序中甘氨酸残基(Gly354和Gly358)的单突变或双突变显著降低或消除了细菌中TME1同三聚体的形成,以及HCVpp和HCVcc系统中E1同三聚体的形成。同时观察到感染力的丧失,表明E1的三聚体形式对于病毒感染性至关重要。综上所述,这些结果表明E1E2异二聚体在HCV颗粒上形成三聚体,并且它们支持E1可能是融合蛋白的假设。
HCV糖蛋白E1和E2在病毒进入肝细胞以及病毒体形态发生中起重要作用。在感染的细胞中,这两种蛋白形成一种复合物,其中E2与细胞受体相互作用,而E1的功能仍知之甚少。然而,最近的结构数据表明E1可能是负责病毒膜与细胞膜融合过程的蛋白。在这里,我们研究了HCV包膜糖蛋白的寡聚状态。我们证明E1在病毒体组装后形成功能性三聚体,并且除了对E2的需求外,这种寡聚化的决定因素存在于E1跨膜结构域内的保守GxxxG基序中。综上所述,这些结果表明E1E2异二聚体复合物在HCV颗粒组装过程中可能发生重排,以产生E1E2异二聚体的三聚体形式。获得关于这种三聚体的结构信息将有助于抗HCV疫苗的设计。