Suppr超能文献

Deviations in gait pattern in experimental models of hindlimb paresis shown by a novel pressure mapping system.

作者信息

Boyd Benjamin S, Puttlitz Christian, Noble-Haeusslein Linda J, John Constance M, Trivedi Alpa, Topp Kimberly S

机构信息

Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, California 94143-0736, USA.

出版信息

J Neurosci Res. 2007 Aug 1;85(10):2272-83. doi: 10.1002/jnr.21366.

Abstract

Injuries to the central and peripheral nervous system result in varying degrees of paresis and as such alter gait. We developed novel quantitative measures to assess compensatory patterns of gait in experimental models of unilateral and bilateral hindlimb paresis. We hypothesized that hindlimb paresis results in unique alterations in the gait cycle that reflect the symmetry of the initial lesion. To test this hypothesis, adult, male Sprague-Dawley rats were subjected to a unilateral sciatic nerve crush injury or a moderately severe spinal cord contusion injury at T8. Kinematic and timing parameters were captured simultaneously in all four limbs and alterations in gait were then compared to relevant sham controls. Gait analysis consisted of walking trials through a gait tunnel positioned over a Tekscan pressure sensor grid. After sciatic nerve injury, animals unweighted the injured limb by shifting their center of mass toward the contralateral forelimb and hindlimb. These changes in weight-bearing occurred simultaneously with an increase in stance time on the contralateral limbs. As might be expected spinal cord injured animals unweighted their hindlimbs, as shown by reduced hindlimb contact force and contact pressure. These adjustments coincided with a shortening of forelimb stance time and stride length. These findings show both alterations and compensatory changes in gait that reflect the symmetry of the initial injury.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验