Kaake L G, Zou Y, Panzer M J, Frisbie C D, Zhu X-Y
Contribution from the Departments of Chemistry and Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA.
J Am Chem Soc. 2007 Jun 27;129(25):7824-30. doi: 10.1021/ja070615x. Epub 2007 Jun 1.
We apply attenuated total internal reflection Fourier transform infrared (ATR-FTIR) spectroscopy to directly probe active layers in organic thin film transistors (OTFTs). The OTFT studied uses the n-type organic semiconductor N-N'-dioctyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C8) and a polymer electrolyte gate dielectric made from poly(ethylene oxide) and LiClO4. FTIR spectroscopy of the device shows signatures of anionic PTCDI-C8 species and broad polaron bands when the organic semiconductor layer is doped under positive gate bias (VG). There are two distinctive doping regions: a reversible and electrostatic doping region for VG <or= 2 V and an irreversible and electrochemical doping regime for VG>2 V. On the basis of intensity loss of vibrational peaks attributed to neutral PTCDI-C8, we obtain a charge carrier density of 2.9 x 10(14)/cm2 at VG=2 V; this charge injection density corresponds to the conversion of slightly more than one monolayer of PTCDI-C8 molecules into anions. At higher gate bias voltage, electrochemical doping involving the intercalation of Li+ into the organic semiconductor film can convert all PTCDI-C8 molecules in a 30-nm film into anionic species. For comparison, when a conventional gate dielectric (polystyrene) is used, the maximum charge carrier density achievable at VG=200 V is approximately 4.5 x 10(13)/cm2, which corresponds to the conversion of 18% of a monolayer of PTCDI-C8 molecules into anions.
我们应用衰减全内反射傅里叶变换红外(ATR - FTIR)光谱法直接探测有机薄膜晶体管(OTFT)中的有源层。所研究的OTFT使用n型有机半导体N - N'-二辛基 - 3,4,9,10 - 苝四羧酸二酰亚胺(PTCDI - C8)以及由聚环氧乙烷和高氯酸锂制成的聚合物电解质栅极电介质。当有机半导体层在正栅极偏压(VG)下被掺杂时,该器件的FTIR光谱显示出阴离子PTCDI - C8物种的特征以及宽极化子带。存在两个不同的掺杂区域:对于VG≤2 V为可逆的静电掺杂区域,对于VG>2 V为不可逆的电化学掺杂区域。基于归因于中性PTCDI - C8的振动峰的强度损失,我们在VG = 2 V时获得了2.9×10¹⁴/cm²的电荷载流子密度;这种电荷注入密度对应于略多于一个单层的PTCDI - C8分子转变为阴离子。在更高的栅极偏压下,涉及Li⁺嵌入有机半导体膜的电化学掺杂可将30 nm薄膜中的所有PTCDI - C8分子转变为阴离子物种。相比之下,当使用传统的栅极电介质(聚苯乙烯)时,在VG = 200 V时可实现的最大电荷载流子密度约为4.5×10¹³/cm²,这对应于18%的单层PTCDI - C8分子转变为阴离子。