Ten Tusscher Kirsten H W J, Hren Rok, Panfilov Alexander V
Department of Theoretical Biology, Utrecht University, Utrecht, The Netherlands.
Circ Res. 2007 Jun 22;100(12):e87-101. doi: 10.1161/CIRCRESAHA.107.150730. Epub 2007 May 31.
Sudden cardiac death is a major cause of death in the industrialized world, claiming approximately 300,000 victims annually in the United States alone. In most cases, sudden cardiac death is caused by ventricular fibrillation (VF). Experimental studies in large animal hearts have shown that the uncoordinated contractions during VF are caused by large numbers of chaotically wandering reentrant waves of electrical activity. However, recent clinical data on VF in the human heart seem to suggest that human VF may have a markedly different organization. Here, we use a detailed model of the human ventricles, including a detailed description of cell electrophysiology, ventricular anatomy, and fiber direction anisotropy, to study the organization of human VF. We show that characteristics of our simulated VF are qualitatively similar to the clinical data. Furthermore, we find that human VF is driven by only approximately 10 reentrant sources and thus is much more organized than VF in animal hearts of comparable size, where VF is driven by approximately 50 sources. We investigate the influence of anisotropy ratio, tissue excitability, and restitution properties on the number of reentrant sources driving VF. We find that the number of rotors depends strongest on minimum action potential duration, a property that differs significantly between human and large animal hearts. Based on these findings, we suggest that the simpler spatial organization of human VF relative to VF in large animal hearts may be caused by differences in minimum action potential duration. Both the simpler spatial organization of human VF and its suggested cause may have important implications for treating and preventing this dangerous arrhythmia in humans.
心脏性猝死是工业化国家的主要死因,仅在美国每年就有约30万人因此丧生。在大多数情况下,心脏性猝死是由心室颤动(VF)引起的。对大型动物心脏的实验研究表明,心室颤动期间的不协调收缩是由大量混乱游走的电活动折返波引起的。然而,最近关于人类心脏心室颤动的临床数据似乎表明,人类心室颤动可能具有明显不同的组织结构。在此,我们使用一个详细的人类心室模型,包括细胞电生理学、心室解剖结构和纤维方向各向异性的详细描述,来研究人类心室颤动的组织结构。我们表明,模拟的心室颤动特征在质量上与临床数据相似。此外,我们发现人类心室颤动仅由大约10个折返源驱动,因此比同等大小的动物心脏中的心室颤动更具组织性,在动物心脏中,心室颤动由大约50个源驱动。我们研究了各向异性比率、组织兴奋性和恢复特性对驱动心室颤动的折返源数量的影响。我们发现,转子的数量最强烈地取决于最小动作电位持续时间,这一特性在人类和大型动物心脏之间有显著差异。基于这些发现,我们认为人类心室颤动相对于大型动物心脏中心室颤动更简单的空间组织可能是由最小动作电位持续时间的差异引起的。人类心室颤动更简单的空间组织及其推测的原因可能对治疗和预防人类这种危险的心律失常具有重要意义。