Suppr超能文献

通过深度学习实现动力系统的多源数据与知识融合:在时空心脏建模中的应用

Multi-Source Data and Knowledge Fusion via Deep Learning for Dynamical Systems: Applications to Spatiotemporal Cardiac Modeling.

作者信息

Yao Bing

机构信息

Department of Industrial & Systems Engineering The University of Tennessee, Knoxville, TN, 37996 USA.

出版信息

IISE Trans Healthc Syst Eng. 2025;15(1):1-14. doi: 10.1080/24725579.2024.2398592. Epub 2024 Sep 7.

Abstract

Advanced sensing and imaging provide unprecedented opportunities to collect data from diverse sources for increasing information visibility in spatiotemporal dynamical systems. Furthermore, the fundamental physics of the dynamical system is commonly elucidated through a set of partial differential equations (PDEs), which plays a critical role in delineating the manner in which the sensing signals can be modeled. Reliable predictive modeling of such spatiotemporal dynamical systems calls upon the effective fusion of fundamental physics knowledge and multi-source sensing data. This paper proposes a multi-source data and knowledge fusion framework via deep learning for dynamical systems with applications to spatiotemporal cardiac modeling. This framework not only achieves effective data fusion through capturing the physics-based information flow between different domains, but also incorporates the geometric information of a 3D system through a graph Laplacian for robust spatiotemporal predictive modeling. We implement the proposed framework to model cardiac electrodynamics under both healthy and diseased heart conditions. Numerical experiments demonstrate the superior performance of our framework compared with traditional approaches that lack the capability for effective data fusion or geometric information incorporation.

摘要

先进的传感与成像技术为从各种来源收集数据提供了前所未有的机会,以提高时空动态系统中的信息可见性。此外,动态系统的基本物理原理通常通过一组偏微分方程(PDE)来阐明,这在描述传感信号建模方式方面起着关键作用。对这种时空动态系统进行可靠的预测建模需要有效融合基本物理知识和多源传感数据。本文提出了一种基于深度学习的多源数据与知识融合框架,用于动态系统,并应用于时空心脏建模。该框架不仅通过捕捉不同域之间基于物理的信息流实现了有效的数据融合,还通过图拉普拉斯算子纳入了三维系统的几何信息,以进行稳健的时空预测建模。我们实施所提出的框架,对健康和患病心脏条件下的心脏电动力学进行建模。数值实验表明,与缺乏有效数据融合或几何信息纳入能力的传统方法相比,我们的框架具有卓越的性能。

相似文献

7
Learning dynamical systems from data: An introduction to physics-guided deep learning.从数据中学习动力系统:物理引导深度学习导论。
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2311808121. doi: 10.1073/pnas.2311808121. Epub 2024 Jun 24.

本文引用的文献

8
Multi-Branching Temporal Convolutional Network for Sepsis Prediction.多分支时间卷积网络在脓毒症预测中的应用。
IEEE J Biomed Health Inform. 2022 Feb;26(2):876-887. doi: 10.1109/JBHI.2021.3092835. Epub 2022 Feb 4.
10
A Comprehensive Survey on Graph Neural Networks.图神经网络综述。
IEEE Trans Neural Netw Learn Syst. 2021 Jan;32(1):4-24. doi: 10.1109/TNNLS.2020.2978386. Epub 2021 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验