Whiteley Jonathan P
Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK.
Ann Biomed Eng. 2007 Sep;35(9):1510-20. doi: 10.1007/s10439-007-9337-3. Epub 2007 Jun 1.
Previous work [Whiteley, J. P. IEEE Trans. Biomed. Eng. 53:2139-2147, 2006] derived a stable, semi-implicit numerical scheme for solving the bidomain equations. This scheme allows the timestep used when solving the bidomain equations numerically to be chosen by accuracy considerations rather than stability considerations. In this study we modify this scheme to allow an adaptive numerical solution in both time and space. The spatial mesh size is determined by the gradient of the transmembrane and extracellular potentials while the timestep is determined by the values of: (i) the fast sodium current; and (ii) the calcium release from junctional sarcoplasmic reticulum to myoplasm current. For two-dimensional simulations presented here, combining the numerical algorithm in the paper cited above with the adaptive algorithm presented here leads to an increase in computational efficiency by a factor of around 250 over previous work, together with significantly less computational memory being required. The speedup for three-dimensional simulations is likely to be more impressive.
先前的工作[怀特利,J.P.《IEEE生物医学工程汇刊》53:2139 - 2147,2006]推导了一种用于求解双域方程的稳定半隐式数值格式。该格式使得在数值求解双域方程时所使用的时间步长能够依据精度考量而非稳定性考量来选取。在本研究中,我们对该格式进行修改,以实现时间和空间上的自适应数值解。空间网格大小由跨膜电位和细胞外电位的梯度决定,而时间步长由以下各项的值决定:(i)快速钠电流;以及(ii)从连接肌浆网到肌浆的钙释放电流。对于此处给出的二维模拟,将上述引用论文中的数值算法与此处给出的自适应算法相结合,相较于先前的工作,计算效率提高了约250倍,同时所需的计算内存显著减少。三维模拟的加速效果可能会更显著。