Suppr超能文献

求解耦合系统可以提高双域方程的计算效率。

Solving the coupled system improves computational efficiency of the bidomain equations.

机构信息

Fujitsu Laboratories of Europe Ltd., Hayes UB4 8FE, UK.

出版信息

IEEE Trans Biomed Eng. 2009 Oct;56(10):2404-12. doi: 10.1109/TBME.2009.2022548. Epub 2009 May 19.

Abstract

The bidomain equations are frequently used to model the propagation of cardiac action potentials across cardiac tissue. At the whole organ level, the size of the computational mesh required makes their solution a significant computational challenge. As the accuracy of the numerical solution cannot be compromised, efficiency of the solution technique is important to ensure that the results of the simulation can be obtained in a reasonable time while still encapsulating the complexities of the system. In an attempt to increase efficiency of the solver, the bidomain equations are often decoupled into one parabolic equation that is computationally very cheap to solve and an elliptic equation that is much more expensive to solve. In this study, the performance of this uncoupled solution method is compared with an alternative strategy in which the bidomain equations are solved as a coupled system. This seems counterintuitive as the alternative method requires the solution of a much larger linear system at each time step. However, in tests on two 3-D rabbit ventricle benchmarks, it is shown that the coupled method is up to 80% faster than the conventional uncoupled method-and that parallel performance is better for the larger coupled problem.

摘要

双域方程常用于模拟心脏动作电位在心脏组织中的传播。在整个器官水平上,所需的计算网格的大小使得它们的解成为一个重大的计算挑战。由于数值解的准确性不能妥协,因此解算技术的效率对于确保在合理的时间内获得模拟结果而同时仍包含系统的复杂性是很重要的。为了提高求解器的效率,双域方程通常被解耦为一个抛物型方程,该方程的计算成本非常低廉,而一个椭圆型方程的计算成本则要昂贵得多。在这项研究中,将这种非耦合的解决方案方法的性能与另一种策略进行了比较,在该策略中,将双域方程作为一个耦合系统进行求解。这似乎违反直觉,因为替代方法要求在每个时间步都要解决一个更大的线性系统。但是,在对两个 3-D 兔心室基准测试的测试中,表明耦合方法比传统的非耦合方法快 80%,并且对于更大的耦合问题,并行性能更好。

相似文献

1
Solving the coupled system improves computational efficiency of the bidomain equations.
IEEE Trans Biomed Eng. 2009 Oct;56(10):2404-12. doi: 10.1109/TBME.2009.2022548. Epub 2009 May 19.
2
Computational techniques for solving the bidomain equations in three dimensions.
IEEE Trans Biomed Eng. 2002 Nov;49(11):1260-9. doi: 10.1109/TBME.2002.804597.
3
An efficient numerical technique for the solution of the monodomain and bidomain equations.
IEEE Trans Biomed Eng. 2006 Nov;53(11):2139-47. doi: 10.1109/TBME.2006.879425.
4
Parallel multigrid preconditioner for the cardiac bidomain model.
IEEE Trans Biomed Eng. 2004 Nov;51(11):1960-8. doi: 10.1109/TBME.2004.834275.
5
Algebraic multigrid preconditioner for the cardiac bidomain model.
IEEE Trans Biomed Eng. 2007 Apr;54(4):585-96. doi: 10.1109/TBME.2006.889181.
6
Physiology driven adaptivity for the numerical solution of the bidomain equations.
Ann Biomed Eng. 2007 Sep;35(9):1510-20. doi: 10.1007/s10439-007-9337-3. Epub 2007 Jun 1.
7
Simulating Cardiac Electrophysiology Using Unstructured All-Hexahedra Spectral Elements.
Biomed Res Int. 2015;2015:473279. doi: 10.1155/2015/473279. Epub 2015 Oct 25.
8
Solving the cardiac bidomain equations for discontinuous conductivities.
IEEE Trans Biomed Eng. 2006 Jul;53(7):1265-72. doi: 10.1109/TBME.2006.873750.
9
An efficient technique for the numerical solution of the bidomain equations.
Ann Biomed Eng. 2008 Aug;36(8):1398-408. doi: 10.1007/s10439-008-9513-0. Epub 2008 May 15.
10
The use of spectral methods in bidomain studies.
Crit Rev Biomed Eng. 1992;20(3-4):255-77.

本文引用的文献

1
Solvers for the cardiac bidomain equations.
Prog Biophys Mol Biol. 2008 Jan-Apr;96(1-3):3-18. doi: 10.1016/j.pbiomolbio.2007.07.012. Epub 2007 Aug 11.
2
Physiology driven adaptivity for the numerical solution of the bidomain equations.
Ann Biomed Eng. 2007 Sep;35(9):1510-20. doi: 10.1007/s10439-007-9337-3. Epub 2007 Jun 1.
3
Algebraic multigrid preconditioner for the cardiac bidomain model.
IEEE Trans Biomed Eng. 2007 Apr;54(4):585-96. doi: 10.1109/TBME.2006.889181.
4
An efficient numerical technique for the solution of the monodomain and bidomain equations.
IEEE Trans Biomed Eng. 2006 Nov;53(11):2139-47. doi: 10.1109/TBME.2006.879425.
5
On the computational complexity of the bidomain and the monodomain models of electrophysiology.
Ann Biomed Eng. 2006 Jul;34(7):1088-97. doi: 10.1007/s10439-006-9082-z. Epub 2006 May 16.
6
A generalized finite difference method for modeling cardiac electrical activation on arbitrary, irregular computational meshes.
Math Biosci. 2005 Dec;198(2):169-89. doi: 10.1016/j.mbs.2005.07.007. Epub 2005 Sep 6.
7
A finite volume method for modeling discontinuous electrical activation in cardiac tissue.
Ann Biomed Eng. 2005 May;33(5):590-602. doi: 10.1007/s10439-005-1434-6.
9
Computational tools for modeling electrical activity in cardiac tissue.
J Electrocardiol. 2003;36 Suppl:69-74. doi: 10.1016/j.jelectrocard.2003.09.017.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验