Suppr超能文献

最大努力水平和垂直跳跃动作的最佳协调——一项计算机模拟研究

Optimal coordination of maximal-effort horizontal and vertical jump motions--a computer simulation study.

作者信息

Nagano Akinori, Komura Taku, Fukashiro Senshi

机构信息

Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.

出版信息

Biomed Eng Online. 2007 Jun 1;6:20. doi: 10.1186/1475-925X-6-20.

Abstract

BACKGROUND

The purpose of this study was to investigate the coordination strategy of maximal-effort horizontal jumping in comparison with vertical jumping, using the methodology of computer simulation.

METHODS

A skeletal model that has nine rigid body segments and twenty degrees of freedom was developed. Thirty-two Hill-type lower limb muscles were attached to the model. The excitation-contraction dynamics of the contractile element, the tissues around the joints to limit the joint range of motion, as well as the foot-ground interaction were implemented. Simulations were initiated from an identical standing posture for both motions. Optimal pattern of the activation input signal was searched through numerical optimization. For the horizontal jumping, the goal was to maximize the horizontal distance traveled by the body's center of mass. For the vertical jumping, the goal was to maximize the height reached by the body's center of mass.

RESULTS

As a result, it was found that the hip joint was utilized more vigorously in the horizontal jumping than in the vertical jumping. The muscles that have a function of joint flexion such as the m. iliopsoas, m. rectus femoris and m. tibialis anterior were activated to a greater level during the countermovement in the horizontal jumping with an effect of moving the body's center of mass in the forward direction. Muscular work was transferred to the mechanical energy of the body's center of mass more effectively in the horizontal jump, which resulted in a greater energy gain of the body's center of mass throughout the motion.

CONCLUSION

These differences in the optimal coordination strategy seem to be caused from the requirement that the body's center of mass needs to be located above the feet in a vertical jumping, whereas this requirement is not so strict in a horizontal jumping.

摘要

背景

本研究旨在采用计算机模拟方法,研究最大努力水平跳跃与垂直跳跃相比的协调策略。

方法

开发了一个具有九个刚体节段和二十个自由度的骨骼模型。三十二块希尔型下肢肌肉附着在该模型上。实现了收缩元件的兴奋 - 收缩动力学、限制关节运动范围的关节周围组织以及脚与地面的相互作用。两种运动均从相同的站立姿势开始进行模拟。通过数值优化搜索激活输入信号的最佳模式。对于水平跳跃,目标是使身体重心移动的水平距离最大化。对于垂直跳跃,目标是使身体重心达到的高度最大化。

结果

结果发现,水平跳跃时髋关节的使用比垂直跳跃时更活跃。在水平跳跃的反向运动过程中,具有关节屈曲功能的肌肉,如髂腰肌、股直肌和胫骨前肌,被激活到更高水平,从而产生将身体重心向前移动的效果。在水平跳跃中,肌肉功更有效地转化为身体重心的机械能,这导致在整个运动过程中身体重心获得更大的能量增益。

结论

最佳协调策略的这些差异似乎是由于垂直跳跃时身体重心需要位于双脚上方的要求,而水平跳跃时这一要求不那么严格所致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83a6/1896168/b92a07259e89/1475-925X-6-20-1.jpg

相似文献

2
Force, work and power output of lower limb muscles during human maximal-effort countermovement jumping.
J Electromyogr Kinesiol. 2005 Aug;15(4):367-76. doi: 10.1016/j.jelekin.2004.12.006.
3
Contribution of non-extensor muscles of the leg to maximal-effort countermovement jumping.
Biomed Eng Online. 2005 Sep 6;4:52. doi: 10.1186/1475-925X-4-52.
4
Is energy expenditure taken into account in human sub-maximal jumping?--A simulation study.
J Electromyogr Kinesiol. 2008 Feb;18(1):108-15. doi: 10.1016/j.jelekin.2006.09.006. Epub 2006 Nov 7.
6
Optimizing the Distribution of Leg Muscles for Vertical Jumping.
PLoS One. 2016 Feb 26;11(2):e0150019. doi: 10.1371/journal.pone.0150019. eCollection 2016.
8
Differential effects of countermovement magnitude and volitional effort on vertical jumping.
Eur J Appl Physiol. 2011 Mar;111(3):441-8. doi: 10.1007/s00421-010-1665-6. Epub 2010 Sep 30.
9
Optimal compliant-surface jumping: a multi-segment model of springboard standing jumps.
J Biomech. 2005 Sep;38(9):1822-9. doi: 10.1016/j.jbiomech.2004.08.023.
10
The relationship between joint strength and standing vertical jump performance.
J Appl Biomech. 2008 Aug;24(3):224-33. doi: 10.1123/jab.24.3.224.

引用本文的文献

1
Exploring the accuracy of palaeobiological modelling procedures in forward-dynamics simulations of maximum-effort vertical jumping.
R Soc Open Sci. 2025 May 21;12(5):242109. doi: 10.1098/rsos.242109. eCollection 2025 May.
2
The relationship between off-ice testing and on-ice performance in male youth Ice hockey players.
Front Sports Act Living. 2024 Aug 15;6:1418713. doi: 10.3389/fspor.2024.1418713. eCollection 2024.
4
5
Musculoskeletal simulations to examine the effects of accentuated eccentric loading (AEL) on jump height.
PeerJ. 2023 Jan 23;11:e14687. doi: 10.7717/peerj.14687. eCollection 2023.
6
Are there sex differences in physiological parameters and reaction time responses to overload in firefighters?
PLoS One. 2021 May 3;16(5):e0249559. doi: 10.1371/journal.pone.0249559. eCollection 2021.
9
LOWER LIMB ASYMMETRIES IN RHYTHMIC GYMNASTICS ATHLETES.
Int J Sports Phys Ther. 2016 Feb;11(1):34-43.
10
Analysis of Jumping-Landing Manoeuvers after Different Speed Performances in Soccer Players.
PLoS One. 2015 Nov 24;10(11):e0143323. doi: 10.1371/journal.pone.0143323. eCollection 2015.

本文引用的文献

1
The heat of activation and the heat of shortening in a muscle twitch.
Proc R Soc Lond B Biol Sci. 1949 Jun 23;136(883):195-211. doi: 10.1098/rspb.1949.0019.
2
Contribution of non-extensor muscles of the leg to maximal-effort countermovement jumping.
Biomed Eng Online. 2005 Sep 6;4:52. doi: 10.1186/1475-925X-4-52.
3
Force, work and power output of lower limb muscles during human maximal-effort countermovement jumping.
J Electromyogr Kinesiol. 2005 Aug;15(4):367-76. doi: 10.1016/j.jelekin.2004.12.006.
5
Effects of electromyostimulation training and volleyball practice on jumping ability.
J Strength Cond Res. 2003 Aug;17(3):573-9. doi: 10.1519/1533-4287(2003)017<0573:eoetav>2.0.co;2.
6
A Dynamic Optimization Solution for Vertical Jumping in Three Dimensions.
Comput Methods Biomech Biomed Engin. 1999;2(3):201-231. doi: 10.1080/10255849908907988.
7
In vivo human triceps surae and quadriceps femoris muscle function in a squat jump and counter movement jump.
Eur J Appl Physiol. 2000 Nov;83(4 -5):416-26. doi: 10.1007/s004210000289.
8
Jumping for distance: control of the external force in squat jumps.
Med Sci Sports Exerc. 1999 Aug;31(8):1196-204. doi: 10.1097/00005768-199908000-00018.
9
Comparison of new approaches to estimate mechanical output of individual joints in vertical jumps.
J Biomech. 1998 Oct;31(10):951-5. doi: 10.1016/s0021-9290(98)00094-3.
10
Feline caudofemoralis muscle. Muscle fibre properties, architecture, and motor innervation.
Exp Brain Res. 1998 Jul;121(1):76-91. doi: 10.1007/s002210050439.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验