Wilhelm C, Bal L, Smirnov P, Galy-Fauroux I, Clément O, Gazeau F, Emmerich J
Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université Paris 7, Paris, France.
Biomaterials. 2007 Sep;28(26):3797-806. doi: 10.1016/j.biomaterials.2007.04.047. Epub 2007 May 10.
We describe the applications of new cellular magnetic labeling method to endothelial progenitor cells (EPC), which have therapeutic potential for revascularization. Via their negative surface charges, anionic magnetic nanoparticles adsorb non-specifically to the EPC plasma membrane, thereby triggering efficient spontaneous endocytosis. The label is non-toxic and does not affect the cells' proliferative capacity. The expression of major membrane proteins involved in neovascularisation is preserved. Labeled cells continue to differentiate in vitro and to form tubular structures in Matrigel (an in vitro model of neovascularization). This process was followed in situ by using high-resolution MRI. Finally, we show that magnetic forces can be used to move magnetically labeled EPC in vitro and to modify their organization in Matrigel both in vitro an in vivo. Magnetic cell targeting opens up new possibilities for vascular tissue engineering and for delivering localized cell-based therapies.
我们描述了一种新的细胞磁性标记方法在内皮祖细胞(EPC)中的应用,内皮祖细胞具有血管再生的治疗潜力。通过其负表面电荷,阴离子磁性纳米颗粒非特异性吸附到EPC质膜上,从而触发高效的自发内吞作用。该标记无毒,不影响细胞的增殖能力。参与新血管形成的主要膜蛋白的表达得以保留。标记的细胞在体外继续分化,并在基质胶(一种新血管形成的体外模型)中形成管状结构。通过使用高分辨率MRI对这一过程进行原位跟踪。最后,我们表明磁力可用于在体外移动磁性标记的EPC,并在体外和体内改变它们在基质胶中的排列。磁性细胞靶向为血管组织工程和提供局部细胞疗法开辟了新的可能性。