Vaccaro S, Sobiecka E, Contini S, Locoro G, Free G, Gawlik B M
European Commission, Joint Research Centre, Institute for Environment and Sustainability, Via Enrico Fermi, 21020 Ispra, Italy.
Chemosphere. 2007 Oct;69(7):1055-63. doi: 10.1016/j.chemosphere.2007.04.032. Epub 2007 Jun 4.
Multivariate factor analytical techniques are widely used for the approximation, in terms of a linear combination of factors, of multivariate experimental data. The chemical composition of soil samples are multivariate in nature and provide datasets suitable for the application of these statistical techniques. Recent developments of multivariate factor analytical techniques have led to the approach of Positive Matrix Factorization (PMF), a weighted least squares fit of a data matrix in which the weights are determined depending on the error estimates of each individual data value. This approach relies on more physically significant assumptions than methods like Principal Components Analysis which is frequently used in the analysis of soil datasets. In this paper we apply PMF to characterise the pollutant source in a set of geographically referenced soil samples taken within a 200 m radius of a site characterised by a high concentration of heavy metals. Each sample has been analysed for major and minor elements (using wavelength-dispersive X-ray fluorescence spectrometry), carbon, hydrogen and nitrogen (using a CHN elemental analyzer) and mercury (using cold-vapour atomic absorption spectrometry). Analysis of the soils using PMF resulted in a successful partitioning of variances into sources related to background soil geochemistry, organic influences and those associated with the contamination. Combining these results with a geostatistical approach successfully demarcated the main source of the combined organic and heavy metal contamination.
多变量因子分析技术广泛用于根据因子的线性组合来逼近多变量实验数据。土壤样本的化学成分本质上是多变量的,并提供了适用于这些统计技术应用的数据集。多变量因子分析技术的最新发展导致了正矩阵分解(PMF)方法的出现,它是一种数据矩阵的加权最小二乘拟合,其中权重根据每个数据值的误差估计来确定。与主成分分析等方法相比,这种方法依赖于更具物理意义的假设,主成分分析常用于土壤数据集的分析。在本文中,我们应用PMF来表征在一个以高浓度重金属为特征的场地半径200米范围内采集的一组具有地理参考的土壤样本中的污染物来源。每个样本都已分析了主要和次要元素(使用波长色散X射线荧光光谱法)、碳、氢和氮(使用CHN元素分析仪)以及汞(使用冷蒸气原子吸收光谱法)。使用PMF对土壤进行分析成功地将方差划分为与背景土壤地球化学、有机影响以及与污染相关的来源。将这些结果与地质统计学方法相结合,成功地划定了有机和重金属复合污染的主要来源。