Suppr超能文献

C1 抑制剂:与蛋白酶抑制无关的生物学活性。

C1 inhibitor: biologic activities that are independent of protease inhibition.

作者信息

Davis Alvin E, Cai Shenghe, Liu Dongxu

机构信息

CBR Institute for Biomedical Research, Harvard Medical School, 800 Huntington Avenue, Boston, MA 02114, USA.

出版信息

Immunobiology. 2007;212(4-5):313-23. doi: 10.1016/j.imbio.2006.10.003. Epub 2006 Dec 11.

Abstract

C1 inhibitor therapy improves outcome in several animal models of inflammatory disease. These include sepsis and Gram negative endotoxin shock, vascular leak syndromes, hyperacute transplant rejection, and ischemia-reperfusion injury. Furthermore, some data suggest a beneficial effect in human inflammatory disease. In many inflammatory conditions, complement system activation plays a role in pathogenesis. The contact system also very likely is involved in mediation of damage in inflammatory disease. Therefore, the beneficial effect of C1 inhibitor has been assumed to result from inhibition of one or both of these systems. Over the past several years, several other potential anti-inflammatory effects of C1 inhibitor have been described. These effects do not appear to require protease inhibition and depend on non-covalent interactions with other proteins, cell surfaces or lipids. In the first, C1 inhibitor binds to a variety of extracellular matrix components including type IV collagen, laminin, entactin and fibrinogen. The biologic role of these reactions is unclear, but they may serve to concentrate C1 inhibitor at extravascular inflammatory sites. The second is a non-covalent interaction with C3b that results in inhibition of formation of the alternative pathway C3 convertase, a function analogous to that of factor H. The third is an interaction with E and P selectins on endothelial cells that is mediated by the Lewis(x) tetrasaccharides that are expressed on C1 inhibitor. These interactions result in suppression of leukocyte rolling and transmigration. The fourth interaction is the binding of C1 inhibitor to Gram negative bacterial endotoxin that results in suppression of endotoxin shock by interference with the interaction of endotoxin with its receptor complex on macrophages. Lastly, C1 inhibitor binds directly to Gram negative bacteria, which leads to suppression of the development of sepsis, as demonstrated in the cecal ligation and puncture model. These observations suggest that C1 inhibitor is a multi-faceted anti-inflammatory protein that exerts its effects through a variety of mechanisms including both protease inhibition and several different non-covalent interactions that are unrelated to protease inhibition.

摘要

C1 抑制剂疗法可改善多种炎症性疾病动物模型的预后。这些疾病包括败血症和革兰氏阴性内毒素休克、血管渗漏综合征、超急性移植排斥反应以及缺血再灌注损伤。此外,一些数据表明其对人类炎症性疾病也有有益作用。在许多炎症状态下,补体系统激活在发病机制中起作用。接触系统也很可能参与炎症性疾病的损伤介导。因此,C1 抑制剂的有益作用被认为是由于抑制了这两个系统中的一个或两个。在过去几年中,还描述了 C1 抑制剂的其他几种潜在抗炎作用。这些作用似乎不需要蛋白酶抑制,而是依赖于与其他蛋白质、细胞表面或脂质的非共价相互作用。首先,C1 抑制剂与多种细胞外基质成分结合,包括 IV 型胶原、层粘连蛋白、巢蛋白和纤维蛋白原。这些反应的生物学作用尚不清楚,但它们可能有助于将 C1 抑制剂集中在血管外炎症部位。其次是与 C3b 的非共价相互作用,导致替代途径 C3 转化酶形成的抑制,其功能类似于因子 H。第三种是与内皮细胞上的 E 和 P 选择素的相互作用,由 C1 抑制剂上表达的 Lewis(x)四糖介导。这些相互作用导致白细胞滚动和迁移的抑制。第四种相互作用是 C1 抑制剂与革兰氏阴性细菌内毒素的结合,通过干扰内毒素与其在巨噬细胞上的受体复合物的相互作用来抑制内毒素休克。最后,C1 抑制剂直接与革兰氏阴性细菌结合,这导致败血症发展的抑制,如在盲肠结扎和穿刺模型中所示。这些观察结果表明,C1 抑制剂是一种多方面的抗炎蛋白,它通过多种机制发挥作用,包括蛋白酶抑制和几种与蛋白酶抑制无关的不同非共价相互作用。

相似文献

1
C1 inhibitor: biologic activities that are independent of protease inhibition.
Immunobiology. 2007;212(4-5):313-23. doi: 10.1016/j.imbio.2006.10.003. Epub 2006 Dec 11.
2
Biological activities of C1 inhibitor.
Mol Immunol. 2008 Oct;45(16):4057-63. doi: 10.1016/j.molimm.2008.06.028. Epub 2008 Jul 31.
3
C1 inhibitor, a multi-functional serine protease inhibitor.
Thromb Haemost. 2010 Nov;104(5):886-93. doi: 10.1160/TH10-01-0073. Epub 2010 Aug 30.
4
Biological effects of C1 inhibitor.
Drug News Perspect. 2004 Sep;17(7):439-46. doi: 10.1358/dnp.2004.17.7.863703.
5
The effect of C1 inhibitor on myocardial ischemia and reperfusion injury.
Cardiovasc Pathol. 2013 Jan-Feb;22(1):75-80. doi: 10.1016/j.carpath.2012.05.003. Epub 2012 Jun 16.
6
Anti-apoptotic role for C1 inhibitor in ischemia/reperfusion-induced myocardial cell injury.
Biochem Biophys Res Commun. 2006 Oct 20;349(2):504-12. doi: 10.1016/j.bbrc.2006.08.065. Epub 2006 Aug 22.
7
The effect of C1 inhibitor on intestinal ischemia and reperfusion injury.
Am J Physiol Gastrointest Liver Physiol. 2008 Nov;295(5):G1042-9. doi: 10.1152/ajpgi.90460.2008. Epub 2008 Sep 11.
9
Effect of supraphysiologic levels of C1-inhibitor on the classical, lectin and alternative pathways of complement.
Mol Immunol. 2007 Mar;44(8):1819-26. doi: 10.1016/j.molimm.2006.10.003. Epub 2006 Nov 13.

引用本文的文献

1
SerpinG1: A Novel Biomarker Associated With Poor Coronary Collateral in Patients With Stable Coronary Disease and Chronic Total Occlusion.
J Am Heart Assoc. 2022 Dec 20;11(24):e027614. doi: 10.1161/JAHA.122.027614. Epub 2022 Dec 14.
2
Pentraxin-3-mediated complement activation in a swine model of renal ischemia/reperfusion injury.
Aging (Albany NY). 2021 Apr 20;13(8):10920-10933. doi: 10.18632/aging.202992.
3
Meta-Analysis of Polymyositis and Dermatomyositis Microarray Data Reveals Novel Genetic Biomarkers.
Genes (Basel). 2019 Oct 30;10(11):864. doi: 10.3390/genes10110864.
4
Polyphosphate is a novel cofactor for regulation of complement by a serpin, C1 inhibitor.
Blood. 2016 Sep 29;128(13):1766-76. doi: 10.1182/blood-2016-02-699561. Epub 2016 Jun 23.
5
Molecular characterization of serine protease inhibitor isoform 3, SmSPI, from Schistosoma mansoni.
Parasitol Res. 2016 Aug;115(8):2981-94. doi: 10.1007/s00436-016-5053-y. Epub 2016 Apr 16.
7
Potential Roles for C1 Inhibitor in Transplantation.
Transplantation. 2016 Jul;100(7):1415-24. doi: 10.1097/TP.0000000000000995.
10
Growth factors and IL-17 in hereditary angioedema.
Clin Exp Med. 2016 May;16(2):213-8. doi: 10.1007/s10238-015-0340-y. Epub 2015 Mar 15.

本文引用的文献

2
A direct role for C1 inhibitor in regulation of leukocyte adhesion.
J Immunol. 2005 May 15;174(10):6462-6. doi: 10.4049/jimmunol.174.10.6462.
3
C1 inhibitor prevents Gram-negative bacterial lipopolysaccharide-induced vascular permeability.
Blood. 2005 Mar 15;105(6):2350-5. doi: 10.1182/blood-2004-05-1963. Epub 2004 Nov 2.
4
5
N-linked glycosylation is required for c1 inhibitor-mediated protection from endotoxin shock in mice.
Infect Immun. 2004 Apr;72(4):1946-55. doi: 10.1128/IAI.72.4.1946-1955.2004.
8
Lysines 128 and 132 enable lipopolysaccharide binding to MD-2, leading to Toll-like receptor-4 aggregation and signal transduction.
J Biol Chem. 2003 Nov 28;278(48):48313-20. doi: 10.1074/jbc.M306802200. Epub 2003 Sep 5.
9
C1 inhibitor prevents endotoxin shock via a direct interaction with lipopolysaccharide.
J Immunol. 2003 Sep 1;171(5):2594-601. doi: 10.4049/jimmunol.171.5.2594.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验