Suppr超能文献

分散素B与头孢孟多酯钠在抑制葡萄球菌在聚氨酯上生物膜生长方面的协同活性

Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes.

作者信息

Donelli G, Francolini I, Romoli D, Guaglianone E, Piozzi A, Ragunath C, Kaplan J B

机构信息

Department of Technologies and Health, Istituto Superiore di Sanità, Viale Regina Elena, Rome, Italy.

出版信息

Antimicrob Agents Chemother. 2007 Aug;51(8):2733-40. doi: 10.1128/AAC.01249-06. Epub 2007 Jun 4.

Abstract

Antibiotic therapies to eradicate medical device-associated infections often fail because of the ability of sessile bacteria, encased in their exopolysaccharide matrix, to be more drug resistant than planktonic organisms. In the last two decades, several strategies to prevent microbial adhesion and biofilm formation on the surfaces of medical devices, based mainly on the use of antiadhesive, antiseptic, and antibiotic coatings on polymer surfaces, have been developed. More recent alternative approaches are based on molecules able to interfere with quorum-sensing phenomena or to dissolve biofilms. Interestingly, a newly purified beta-N-acetylglucosaminidase, dispersin B, produced by the gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans, is able to dissolve mature biofilms produced by Staphylococcus epidermidis as well as some other bacterial species. Therefore, in this study, we developed new polymeric matrices able to bind dispersin B either alone or in combination with an antibiotic molecule, cefamandole nafate (CEF). We showed that our functionalized polyurethanes could adsorb a significant amount of dispersin B, which was able to exert its hydrolytic activity against the exopolysaccharide matrix produced by staphylococcal strains. When microbial biofilms were exposed to both dispersin B and CEF, a synergistic action became evident, thus characterizing these polymer-dispersin B-antibiotic systems as promising, highly effective tools for preventing bacterial colonization of medical devices.

摘要

用于根除与医疗器械相关感染的抗生素疗法常常失败,原因在于包裹在胞外多糖基质中的固着细菌比浮游生物具有更强的耐药性。在过去二十年中,人们开发了几种主要基于在聚合物表面使用抗黏附、抗菌和抗生素涂层来防止微生物在医疗器械表面黏附和形成生物膜的策略。最近的替代方法则基于能够干扰群体感应现象或溶解生物膜的分子。有趣的是,一种新纯化的β-N-乙酰氨基葡萄糖苷酶——分散素B,由革兰氏阴性牙周病原体伴放线放线杆菌产生,能够溶解表皮葡萄球菌以及其他一些细菌物种产生的成熟生物膜。因此,在本研究中,我们开发了能够单独结合分散素B或与抗生素分子头孢孟多酯钠(CEF)结合的新型聚合物基质。我们表明,我们的功能化聚氨酯能够吸附大量的分散素B,其能够对葡萄球菌菌株产生的胞外多糖基质发挥水解活性。当微生物生物膜同时暴露于分散素B和CEF时,协同作用变得明显,从而将这些聚合物-分散素B-抗生素系统表征为预防医疗器械细菌定植的有前景、高效的工具。

相似文献

1
Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes.
Antimicrob Agents Chemother. 2007 Aug;51(8):2733-40. doi: 10.1128/AAC.01249-06. Epub 2007 Jun 4.
2
Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition.
Appl Microbiol Biotechnol. 2007 May;75(1):125-32. doi: 10.1007/s00253-006-0790-y. Epub 2007 Jan 13.
4
Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms.
Biomed Microdevices. 2008 Aug;10(4):489-98. doi: 10.1007/s10544-007-9157-0.
5
Multiple combination bactericidal testing of staphylococcal biofilms from implant-associated infections.
Antimicrob Agents Chemother. 2006 Jan;50(1):55-61. doi: 10.1128/AAC.50.1.55-61.2006.
6
Antibiotic delivery polyurethanes containing albumin and polyallylamine nanoparticles.
Eur J Pharm Sci. 2009 Mar 2;36(4-5):555-64. doi: 10.1016/j.ejps.2008.12.006. Epub 2008 Dec 24.
7
Activity of sodium metabisulfite against planktonic and biofilm Staphylococcus species.
Diagn Microbiol Infect Dis. 2007 Apr;57(4):355-9. doi: 10.1016/j.diagmicrobio.2006.10.003. Epub 2006 Dec 22.
10
Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis.
Colloids Surf B Biointerfaces. 2010 Sep 1;79(2):340-4. doi: 10.1016/j.colsurfb.2010.04.014. Epub 2010 Apr 22.

引用本文的文献

1
Diagnostic and therapeutic strategies in combating implanted medical device-associated bacterial biofilm infections.
Folia Microbiol (Praha). 2025 Apr;70(2):321-342. doi: 10.1007/s12223-025-01242-y. Epub 2025 Jan 27.
2
Current Strategies for Combating Biofilm-Forming Pathogens in Clinical Healthcare-Associated Infections.
Indian J Microbiol. 2024 Sep;64(3):781-796. doi: 10.1007/s12088-024-01221-w. Epub 2024 Apr 8.
3
Dispersin B: The Quintessential Antibiofilm Enzyme.
Pathogens. 2024 Aug 7;13(8):668. doi: 10.3390/pathogens13080668.
4
PDIA iminosugar influence on subcutaneous and infections in mice.
Front Cell Infect Microbiol. 2024 Jul 31;14:1395577. doi: 10.3389/fcimb.2024.1395577. eCollection 2024.
5
Biofilm inhibition/eradication: exploring strategies and confronting challenges in combatting biofilm.
Arch Microbiol. 2024 Apr 14;206(5):212. doi: 10.1007/s00203-024-03938-0.
6
An apparent lack of synergy between degradative enzymes against biofilms.
MicroPubl Biol. 2024 Mar 25;2024. doi: 10.17912/micropub.biology.001119. eCollection 2024.
7
Antibiotic Resistant Biofilms and the Quest for Novel Therapeutic Strategies.
Indian J Microbiol. 2024 Mar;64(1):20-35. doi: 10.1007/s12088-023-01138-w. Epub 2023 Nov 28.
8
A global bibliometric and visualized analysis of bacterial biofilm eradication from 2012 to 2022.
Front Microbiol. 2023 Nov 22;14:1287964. doi: 10.3389/fmicb.2023.1287964. eCollection 2023.
10
The Effect of Ficin Immobilized on Carboxymethyl Chitosan on Biofilms of Oral Pathogens.
Int J Mol Sci. 2023 Nov 8;24(22):16090. doi: 10.3390/ijms242216090.

本文引用的文献

1
Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition.
Appl Microbiol Biotechnol. 2007 May;75(1):125-32. doi: 10.1007/s00253-006-0790-y. Epub 2007 Jan 13.
2
Vascular catheter-related infection and sepsis.
Surg Infect (Larchmt). 2006;7 Suppl 2:S25-7. doi: 10.1089/sur.2006.7.s2-25.
3
Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm.
Appl Environ Microbiol. 2006 Mar;72(3):2064-9. doi: 10.1128/AEM.72.3.2064-2069.2006.
4
Quorum-sensing inhibitors as anti-pathogenic drugs.
Int J Med Microbiol. 2006 Apr;296(2-3):149-61. doi: 10.1016/j.ijmm.2006.02.005. Epub 2006 Feb 28.
5
Pore formers promoted release of an antifungal drug from functionalized polyurethanes to inhibit Candida colonization.
J Appl Microbiol. 2006 Mar;100(3):615-22. doi: 10.1111/j.1365-2672.2005.02801.x.
6
Quorum sensing: cell-to-cell communication in bacteria.
Annu Rev Cell Dev Biol. 2005;21:319-46. doi: 10.1146/annurev.cellbio.21.012704.131001.
7
Septic pulmonary embolism: presenting features and clinical course of 14 patients.
Chest. 2005 Jul;128(1):162-6. doi: 10.1378/chest.128.1.162.
10
Biofilm formation and dispersal and the transmission of human pathogens.
Trends Microbiol. 2005 Jan;13(1):7-10. doi: 10.1016/j.tim.2004.11.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验