Asakawa Haruhiko, Haraguchi Tokuko, Hiraoka Yasushi
Kansai Advanced Research Center, National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe 651-2492, Japan.
Cell Div. 2007 Jun 6;2:17. doi: 10.1186/1747-1028-2-17.
In eukaryotic organisms, chromosomes are spatially organized within the nucleus. Such nuclear architecture provides a physical framework for the genetic activities of chromosomes, and changes its functional organization as the cell moves through the phases of the cell cycle. The fission yeast Schizosaccharomyces pombe provides a striking example of nuclear reorganization during the transition from mitosis to meiosis. In this organism, centromeres remain clustered at the spindle-pole body (SPB; a centrosome-equivalent structure in fungi) during mitotic interphase. In contrast, during meiotic prophase, centromeres dissociate from the SPB and telomeres cluster to the SPB. Recent studies revealed that this repositioning of chromosomes is regulated by mating pheromone signaling. Some centromere proteins disappear from the centromere in response to mating pheromone, leading to dissociation of centromeres from the SPB. Interestingly, mating pheromone signaling is also required for monopolar orientation of the kinetochore which is crucial for proper segregation of sister chromatids during meiosis. When meiosis is induced in the absence of mating pheromone signaling, aberrant chromosome behaviors are observed: the centromere proteins remain at the centromere; the centromere remains associated with the SPB; and sister chromatids segregate precociously in the first meiotic division. These aberrant chromosome behaviors are all normalized by activating the mating pheromone signaling pathway. Thus, action of mating pheromone on the centromere is important for coherent behavior of chromosomes in meiosis. Here we discuss repositioning and reconstruction of the centromere during the transition from mitosis to meiosis, and highlight its significance for proper progression of meiosis.
在真核生物中,染色体在细胞核内进行空间组织。这种核结构为染色体的遗传活动提供了一个物理框架,并随着细胞经历细胞周期的各个阶段而改变其功能组织。裂殖酵母粟酒裂殖酵母提供了一个从有丝分裂向减数分裂转变过程中核重组的显著例子。在这种生物体中,着丝粒在有丝分裂间期聚集在纺锤极体(SPB;真菌中与中心体等效的结构)上。相比之下,在减数分裂前期,着丝粒从SPB解离,端粒聚集到SPB。最近的研究表明,这种染色体的重新定位受交配信息素信号传导调控。一些着丝粒蛋白响应交配信息素从着丝粒消失,导致着丝粒与SPB解离。有趣的是,动粒的单极定向也需要交配信息素信号传导,而动粒的单极定向对于减数分裂期间姐妹染色单体的正确分离至关重要。当在没有交配信息素信号传导的情况下诱导减数分裂时,会观察到异常的染色体行为:着丝粒蛋白保留在着丝粒上;着丝粒仍与SPB相关联;姐妹染色单体在第一次减数分裂中过早分离。通过激活交配信息素信号通路,所有这些异常的染色体行为都恢复正常。因此,交配信息素对着丝粒的作用对于减数分裂中染色体的连贯行为很重要。在这里,我们讨论从有丝分裂到减数分裂转变过程中着丝粒的重新定位和重建,并强调其对减数分裂正常进行的重要性。