Aubrey Karin R, Rossi Francesco M, Ruivo Raquel, Alboni Silvia, Bellenchi Gian Carlo, Le Goff Anne, Gasnier Bruno, Supplisson Stéphane
Laboratoire de Neurobiologie, Centre National de la Recherche Scientifique, Ecole Normale Supérieure, 75005 Paris, France.
J Neurosci. 2007 Jun 6;27(23):6273-81. doi: 10.1523/JNEUROSCI.1024-07.2007.
The mechanisms that specify the vesicular phenotype of inhibitory interneurons in vertebrates are poorly understood because the two main inhibitory transmitters, glycine and GABA, share the same vesicular inhibitory amino acid transporter (VIAAT) and are both present in neurons during postnatal development. We have expressed VIAAT and the plasmalemmal transporters for glycine and GABA in a neuroendocrine cell line and measured the quantal release of glycine and GABA using a novel double-sniffer patch-clamp technique. We found that glycine is released from vesicles when VIAAT is coexpressed with either the neuronal transporter GlyT2 or the glial transporter GlyT1. However, GlyT2 was more effective than GlyT1, probably because GlyT2 is unable to operate in the reverse mode, which gives it an advantage in maintaining the high cytosolic glycine concentration required for efficient vesicular loading by VIAAT. The vesicular inhibitory phenotype was gradually altered from glycinergic to GABAergic through mixed events when GABA is introduced into the secretory cell and competes for uptake by VIAAT. Interestingly, the VIAAT ortholog from Caenorhabditis elegans (UNC-47), a species lacking glycine transmission, also supports glycine exocytosis in the presence of GlyT2, and a point mutation of UNC-47 that abolishes GABA transmission in the worm confers glycine specificity. Together, these results suggest that an increased cytosolic availability of glycine in VIAAT-containing terminals was crucial for the emergence of glycinergic transmission in vertebrates.
脊椎动物中抑制性中间神经元囊泡表型的确定机制尚不清楚,因为两种主要的抑制性神经递质,甘氨酸和γ-氨基丁酸(GABA),共享相同的囊泡抑制性氨基酸转运体(VIAAT),并且在出生后发育期间都存在于神经元中。我们在一种神经内分泌细胞系中表达了VIAAT以及甘氨酸和GABA的质膜转运体,并使用一种新型双嗅探膜片钳技术测量了甘氨酸和GABA的量子释放。我们发现,当VIAAT与神经元转运体GlyT2或胶质转运体GlyT1共表达时,甘氨酸从囊泡中释放。然而,GlyT2比GlyT1更有效,可能是因为GlyT2无法以反向模式运作,这使其在维持VIAAT有效囊泡装载所需的高胞质甘氨酸浓度方面具有优势。当将GABA引入分泌细胞并竞争VIAAT摄取时,囊泡抑制表型通过混合事件逐渐从甘氨酸能转变为GABA能。有趣的是,秀丽隐杆线虫(Caenorhabditis elegans)的VIAAT直系同源物(UNC-47),该物种缺乏甘氨酸传递,在存在GlyT2的情况下也支持甘氨酸胞吐作用;并且在蠕虫中消除GABA传递的UNC-47点突变赋予了甘氨酸特异性。总之,这些结果表明,在含VIAAT的终末中,甘氨酸胞质可用性的增加对于脊椎动物中甘氨酸能传递的出现至关重要。