Kaminski Naftali, Bar-Joseph Ziv
Simmons Center for Interstitial Lung Disease, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, USA.
J Comput Biol. 2007 Apr;14(3):324-38. doi: 10.1089/cmb.2007.0001.
Pharmacogenomics and clinical studies that measure the temporal expression levels of patients can identify important pathways and biomarkers that are activated during disease progression or in response to treatment. However, researchers face a number of challenges when trying to combine expression profiles from these patients. Unlike studies that rely on lab animals or cell lines, individuals vary in their baseline expression and in their response rate. In this paper we present a generative model for such data. Our model represents patient expression data using two levels, a gene level, which corresponds to a common response pattern, and a patient level, which accounts for the patient specific expression patterns and response rate. Using an EM algorithm, we infer the parameters of the model. We used our algorithm to analyze multiple sclerosis patient response to interferon-beta. As we show, our algorithm was able to improve upon prior methods for combining patients data. In addition, our algorithm was able to correctly identify patient specific response patterns.
药物基因组学和测量患者时间表达水平的临床研究能够识别在疾病进展过程中或对治疗产生反应时被激活的重要途径和生物标志物。然而,研究人员在尝试整合这些患者的表达谱时面临诸多挑战。与依赖实验动物或细胞系的研究不同,个体在其基线表达和反应率方面存在差异。在本文中,我们针对此类数据提出了一种生成模型。我们的模型使用两个层次来表示患者表达数据,一个是基因层次,它对应一种共同的反应模式,另一个是患者层次,它考虑了患者特定的表达模式和反应率。使用期望最大化(EM)算法,我们推断模型的参数。我们使用我们的算法来分析多发性硬化症患者对β-干扰素的反应。如我们所示,我们的算法能够改进先前用于整合患者数据的方法。此外,我们的算法能够正确识别患者特定的反应模式。