Suppr超能文献

使用高斯过程回归估计重复时间偏移。

Estimating replicate time shifts using Gaussian process regression.

机构信息

Department of Computer Science, University of California Irvine, Irvine, CA 92697, USA.

出版信息

Bioinformatics. 2010 Mar 15;26(6):770-6. doi: 10.1093/bioinformatics/btq022. Epub 2010 Feb 9.

Abstract

MOTIVATION

Time-course gene expression datasets provide important insights into dynamic aspects of biological processes, such as circadian rhythms, cell cycle and organ development. In a typical microarray time-course experiment, measurements are obtained at each time point from multiple replicate samples. Accurately recovering the gene expression patterns from experimental observations is made challenging by both measurement noise and variation among replicates' rates of development. Prior work on this topic has focused on inference of expression patterns assuming that the replicate times are synchronized. We develop a statistical approach that simultaneously infers both (i) the underlying (hidden) expression profile for each gene, as well as (ii) the biological time for each individual replicate. Our approach is based on Gaussian process regression (GPR) combined with a probabilistic model that accounts for uncertainty about the biological development time of each replicate.

RESULTS

We apply GPR with uncertain measurement times to a microarray dataset of mRNA expression for the hair-growth cycle in mouse back skin, predicting both profile shapes and biological times for each replicate. The predicted time shifts show high consistency with independently obtained morphological estimates of relative development. We also show that the method systematically reduces prediction error on out-of-sample data, significantly reducing the mean squared error in a cross-validation study.

AVAILABILITY

Matlab code for GPR with uncertain time shifts is available at http://sli.ics.uci.edu/Code/GPRTimeshift/

CONTACT

ihler@ics.uci.edu.

摘要

动机

时程基因表达数据集为生物过程的动态方面提供了重要的见解,例如昼夜节律、细胞周期和器官发育。在典型的微阵列时程实验中,从多个重复样本在每个时间点获得测量值。由于测量噪声和重复样本发育速度的变化,准确地从实验观察中恢复基因表达模式具有挑战性。关于这个主题的先前工作集中在假设重复时间同步的情况下推断表达模式。我们开发了一种统计方法,同时推断每个基因的潜在(隐藏)表达谱,以及每个个体重复的生物学时间。我们的方法基于高斯过程回归(GPR)与概率模型相结合,该模型考虑了每个重复的生物学发育时间的不确定性。

结果

我们将具有不确定测量时间的 GPR 应用于小鼠背部皮肤毛发生长周期的 mRNA 表达的微阵列数据集,预测每个重复的形状和生物学时间。预测的时间移位与相对发育的独立获得的形态估计高度一致。我们还表明,该方法系统地减少了样本外数据的预测误差,在交叉验证研究中显著降低了均方误差。

可用性

具有不确定时间移位的 GPR 的 Matlab 代码可在 http://sli.ics.uci.edu/Code/GPRTimeshift/ 获得。

联系方式

ihler@ics.uci.edu

相似文献

1
Estimating replicate time shifts using Gaussian process regression.使用高斯过程回归估计重复时间偏移。
Bioinformatics. 2010 Mar 15;26(6):770-6. doi: 10.1093/bioinformatics/btq022. Epub 2010 Feb 9.
3
Optimal allocation of replicates for measurement evaluation studies.测量评估研究中重复测量的最优分配
Genomics Proteomics Bioinformatics. 2006 Aug;4(3):196-202. doi: 10.1016/S1672-0229(06)60033-8.
6
Bayesian mixture model based clustering of replicated microarray data.基于贝叶斯混合模型的重复微阵列数据聚类
Bioinformatics. 2004 May 22;20(8):1222-32. doi: 10.1093/bioinformatics/bth068. Epub 2004 Feb 10.
9
Bayesian hierarchical error model for analysis of gene expression data.用于基因表达数据分析的贝叶斯分层误差模型。
Bioinformatics. 2004 Sep 1;20(13):2016-25. doi: 10.1093/bioinformatics/bth192. Epub 2004 Mar 25.

引用本文的文献

5
Analysis of time-resolved gene expression measurements across individuals.分析个体间的时间分辨基因表达测量。
PLoS One. 2013 Dec 9;8(12):e82340. doi: 10.1371/journal.pone.0082340. eCollection 2013.
7

本文引用的文献

1
Circadian clock genes contribute to the regulation of hair follicle cycling.生物钟基因有助于调节毛囊周期。
PLoS Genet. 2009 Jul;5(7):e1000573. doi: 10.1371/journal.pgen.1000573. Epub 2009 Jul 24.
6
Significance analysis of time course microarray experiments.时间进程微阵列实验的显著性分析
Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12837-42. doi: 10.1073/pnas.0504609102. Epub 2005 Sep 2.
8
Analyzing time series gene expression data.分析时间序列基因表达数据。
Bioinformatics. 2004 Nov 1;20(16):2493-503. doi: 10.1093/bioinformatics/bth283. Epub 2004 May 6.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验