Suppr超能文献

地理范围对背景灭绝和大规模灭绝期间灭绝风险的影响。

The effect of geographic range on extinction risk during background and mass extinction.

作者信息

Payne Jonathan L, Finnegan Seth

机构信息

Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305, USA.

出版信息

Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10506-11. doi: 10.1073/pnas.0701257104. Epub 2007 Jun 11.

Abstract

Wide geographic range is generally thought to buffer taxa against extinction, but the strength of this effect has not been investigated for the great majority of the fossil record. Although the majority of genus extinctions have occurred between major mass extinctions, little is known about extinction selectivity regimes during these "background" intervals. Consequently, the question of whether selectivity regimes differ between background and mass extinctions is largely unresolved. Using logistic regression, we evaluated the selectivity of genus survivorship with respect to geographic range by using a global database of fossil benthic marine invertebrates spanning the Cambrian through the Neogene periods, an interval of approximately 500 My. Our results show that wide geographic range has been significantly and positively associated with survivorship for the great majority of Phanerozoic time. Moreover, the significant association between geographic range and survivorship remains after controlling for differences in species richness and abundance among genera. However, mass extinctions and several second-order extinction events exhibit less geographic range selectivity than predicted by range alone. Widespread environmental disturbance can explain the reduced association between geographic range and extinction risk by simultaneously affecting genera with similar ecological and physiological characteristics on global scales. Although factors other than geographic range have certainly affected extinction risk during many intervals, geographic range is likely the most consistently significant predictor of extinction risk in the marine fossil record.

摘要

一般认为广泛的地理分布范围能缓冲分类群免于灭绝,但对于绝大多数化石记录而言,这种效应的强度尚未得到研究。尽管大多数属的灭绝发生在主要的大灭绝事件之间,但对于这些“背景”时期的灭绝选择性机制却知之甚少。因此,背景灭绝和大灭绝期间的选择性机制是否不同这一问题在很大程度上仍未得到解决。我们使用逻辑回归,通过一个涵盖寒武纪至新近纪时期(约5亿年的时间间隔)的全球底栖海洋无脊椎动物化石数据库,评估了属的生存对地理分布范围的选择性。我们的结果表明,在显生宙的大部分时间里,广泛的地理分布范围与生存显著正相关。此外,在控制了属间物种丰富度和丰度的差异之后,地理分布范围与生存之间的显著关联依然存在。然而,大灭绝和几次二级灭绝事件所表现出的地理分布范围选择性比仅由分布范围所预测的要小。广泛的环境干扰可以解释地理分布范围与灭绝风险之间关联的减弱,因为它在全球范围内同时影响具有相似生态和生理特征的属。尽管在许多时期,除地理分布范围之外的其他因素肯定也影响了灭绝风险,但地理分布范围很可能是海洋化石记录中最始终显著的灭绝风险预测指标。

相似文献

1
The effect of geographic range on extinction risk during background and mass extinction.
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10506-11. doi: 10.1073/pnas.0701257104. Epub 2007 Jun 11.
2
Regional environmental breadth predicts geographic range and longevity in fossil marine genera.
PLoS One. 2011 May 4;6(5):e18946. doi: 10.1371/journal.pone.0018946.
3
Organism activity levels predict marine invertebrate survival during ancient global change extinctions.
Glob Chang Biol. 2017 Apr;23(4):1477-1485. doi: 10.1111/gcb.13484. Epub 2016 Sep 13.
4
Quantifying ecological impacts of mass extinctions with network analysis of fossil communities.
Proc Natl Acad Sci U S A. 2018 May 15;115(20):5217-5222. doi: 10.1073/pnas.1719976115. Epub 2018 Apr 23.
5
Estimates of the magnitudes of major marine mass extinctions in earth history.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):E6325-E6334. doi: 10.1073/pnas.1613094113. Epub 2016 Oct 3.
6
Long-term differences in extinction risk among the seven forms of rarity.
Proc Biol Sci. 2012 Dec 22;279(1749):4969-76. doi: 10.1098/rspb.2012.1902. Epub 2012 Oct 24.
7
Mass extinctions alter extinction and origination dynamics with respect to body size.
Proc Biol Sci. 2021 Oct 13;288(1960):20211681. doi: 10.1098/rspb.2021.1681. Epub 2021 Oct 6.
8
The biogeographical imprint of mass extinctions.
Proc Biol Sci. 2018 May 16;285(1878). doi: 10.1098/rspb.2018.0232.
9
Extinctions. Paleontological baselines for evaluating extinction risk in the modern oceans.
Science. 2015 May 1;348(6234):567-70. doi: 10.1126/science.aaa6635.
10
Patterns of generic extinction in the fossil record.
Paleobiology. 1988;14(2):109-25. doi: 10.1017/s0094837300011866.

引用本文的文献

1
Can Macroevolution Inform Contemporary Extinction Risk?
Ecol Lett. 2025 Jul;28(7):e70171. doi: 10.1111/ele.70171.
2
Night lizards survived the Cretaceous-Palaeogene mass extinction near the asteroid impact.
Biol Lett. 2025 Jun;21(6):20250157. doi: 10.1098/rsbl.2025.0157. Epub 2025 Jun 25.
3
Late Cretaceous community structure changed before the asteroid.
Proc Natl Acad Sci U S A. 2025 May 6;122(18):e2505486122. doi: 10.1073/pnas.2505486122. Epub 2025 Apr 28.
4
Tetrapod species-area relationships across the Cretaceous-Paleogene mass extinction.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2419052122. doi: 10.1073/pnas.2419052122. Epub 2025 Mar 25.
5
Forty years later: The status of the "Big Five" mass extinctions.
Camb Prism Extinct. 2023 Jan 5;1:e5. doi: 10.1017/ext.2022.4. eCollection 2023.
6
Selectivity of mass extinctions: Patterns, processes, and future directions.
Camb Prism Extinct. 2023 May 9;1:e12. doi: 10.1017/ext.2023.10. eCollection 2023.
7
Museum 'dark data' show variable impacts on deep-time biogeographic and evolutionary history.
Proc Biol Sci. 2025 Feb;292(2041):20242481. doi: 10.1098/rspb.2024.2481. Epub 2025 Feb 26.
8
Marine species and assemblage change foreshadowed by their thermal bias over Early Jurassic warming.
Nat Commun. 2025 Feb 5;16(1):1370. doi: 10.1038/s41467-025-56589-0.
9
High extinction risk in large foraminifera during past and future mass extinctions.
Sci Adv. 2024 Aug 9;10(32):eadj8223. doi: 10.1126/sciadv.adj8223. Epub 2024 Aug 7.
10
Heterogeneous selectivity and morphological evolution of marine clades during the Permian-Triassic mass extinction.
Nat Ecol Evol. 2024 Jul;8(7):1248-1258. doi: 10.1038/s41559-024-02438-0. Epub 2024 Jun 11.

本文引用的文献

1
Background and mass extinctions: the alternation of macroevolutionary regimes.
Science. 1986 Jan 10;231(4734):129-33. doi: 10.1126/science.231.4734.129.
2
Taxonomic Diversity during the Phanerozoic.
Science. 1972 Sep 22;177(4054):1065-71. doi: 10.1126/science.177.4054.1065.
3
Mass extinctions in the marine fossil record.
Science. 1982 Mar 19;215(4539):1501-3. doi: 10.1126/science.215.4539.1501.
4
A double mass extinction at the end of the paleozoic era.
Science. 1994 Nov 25;266(5189):1340-4. doi: 10.1126/science.266.5189.1340.
5
Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems.
Science. 2006 Nov 24;314(5803):1289-92. doi: 10.1126/science.1133795.
6
Large perturbations of the carbon cycle during recovery from the end-permian extinction.
Science. 2004 Jul 23;305(5683):506-9. doi: 10.1126/science.1097023.
7
Biological correlates of extinction risk in bats.
Am Nat. 2003 Apr;161(4):601-14. doi: 10.1086/368289. Epub 2003 Mar 28.
8
Ascent of dinosaurs linked to an iridium anomaly at the Triassic-Jurassic boundary.
Science. 2002 May 17;296(5571):1305-7. doi: 10.1126/science.1065522.
9
Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm.
Proc Natl Acad Sci U S A. 2002 May 14;99(10):6854-9. doi: 10.1073/pnas.092150999.
10
Determinants of extinction in the fossil record.
Nature. 2002 Mar 28;416(6879):420-4. doi: 10.1038/416420a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验