Wang Xiu-Ping, Suomalainen Marika, Felszeghy Szabolcs, Zelarayan Laura C, Alonso Maria T, Plikus Maksim V, Maas Richard L, Chuong Cheng-Ming, Schimmang Thomas, Thesleff Irma
Developmental Biology Programme, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland.
PLoS Biol. 2007 Jun;5(6):e159. doi: 10.1371/journal.pbio.0050159.
Epithelial stem cells reside in specific niches that regulate their self-renewal and differentiation, and are responsible for the continuous regeneration of tissues such as hair, skin, and gut. Although the regenerative potential of mammalian teeth is limited, mouse incisors grow continuously throughout life and contain stem cells at their proximal ends in the cervical loops. In the labial cervical loop, the epithelial stem cells proliferate and migrate along the labial surface, differentiating into enamel-forming ameloblasts. In contrast, the lingual cervical loop contains fewer proliferating stem cells, and the lingual incisor surface lacks ameloblasts and enamel. Here we have used a combination of mouse mutant analyses, organ culture experiments, and expression studies to identify the key signaling molecules that regulate stem cell proliferation in the rodent incisor stem cell niche, and to elucidate their role in the generation of the intrinsic asymmetry of the incisors. We show that epithelial stem cell proliferation in the cervical loops is controlled by an integrated gene regulatory network consisting of Activin, bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and Follistatin within the incisor stem cell niche. Mesenchymal FGF3 stimulates epithelial stem cell proliferation, and BMP4 represses Fgf3 expression. In turn, Activin, which is strongly expressed in labial mesenchyme, inhibits the repressive effect of BMP4 and restricts Fgf3 expression to labial dental mesenchyme, resulting in increased stem cell proliferation and a large, labial stem cell niche. Follistatin limits the number of lingual stem cells, further contributing to the characteristic asymmetry of mouse incisors, and on the basis of our findings, we suggest a model in which Follistatin antagonizes the activity of Activin. These results show how the spatially restricted and balanced effects of specific components of a signaling network can regulate stem cell proliferation in the niche and account for asymmetric organogenesis. Subtle variations in this or related regulatory networks may explain the different regenerative capacities of various organs and animal species.
上皮干细胞存在于特定的微环境中,这些微环境调节其自我更新和分化,并负责毛发、皮肤和肠道等组织的持续再生。尽管哺乳动物牙齿的再生潜力有限,但小鼠的门齿终生持续生长,且在其近端的颈环中含有干细胞。在唇侧颈环中,上皮干细胞沿唇面增殖并迁移,分化为形成釉质的成釉细胞。相比之下,舌侧颈环中增殖的干细胞较少,舌侧门齿表面缺乏成釉细胞和釉质。在这里,我们结合小鼠突变分析、器官培养实验和表达研究,以确定调节啮齿动物门齿干细胞微环境中干细胞增殖的关键信号分子,并阐明它们在门齿内在不对称性形成中的作用。我们表明,颈环中的上皮干细胞增殖受门齿干细胞微环境内由激活素、骨形态发生蛋白(BMP)、成纤维细胞生长因子(FGF)和卵泡抑素组成的整合基因调控网络控制。间充质FGF3刺激上皮干细胞增殖,而BMP4抑制Fgf3表达。反过来,在唇侧间充质中强烈表达的激活素抑制BMP4的抑制作用,并将Fgf3表达限制在唇侧牙间充质中,导致干细胞增殖增加和一个大的唇侧干细胞微环境。卵泡抑素限制舌侧干细胞的数量,进一步促成小鼠门齿的特征性不对称性,基于我们的发现,我们提出了一个卵泡抑素拮抗激活素活性的模型。这些结果表明信号网络特定成分的空间受限和平衡效应如何调节微环境中的干细胞增殖并解释不对称器官发生。该调控网络或相关调控网络中的细微变化可能解释了各种器官和动物物种不同的再生能力。