Greene Nicholas P, Porcelli Ida, Buchanan Grant, Hicks Matthew G, Schermann Sonya M, Palmer Tracy, Berks Ben C
Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU.
J Biol Chem. 2007 Aug 17;282(33):23937-45. doi: 10.1074/jbc.M702972200. Epub 2007 Jun 12.
The Tat (twin arginine translocation) system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. The integral membrane proteins TatA, TatB, and TatC are essential components of the Tat pathway. TatA forms high order oligomers and is thought to constitute the protein-translocating unit of the Tat system. Cysteine scanning mutagenesis was used to systematically investigate the functional importance of residues in the essential N-terminal transmembrane and amphipathic helices of Escherichia coli TatA. Cysteine substitutions of most residues in the amphipathic helix, including all the residues on the hydrophobic face of the helix, severely compromise Tat function. Glutamine 8 was identified as the only residue in the transmembrane helix that is critical for TatA function. The cysteine variants in the transmembrane helix were used in disulfide mapping experiments to probe the oligomeric arrangement of TatA protomers within the larger TatA complex. Residues in the center of the transmembrane helix (including residues 10-16) show a distinct pattern of cross-linking indicating that this region of the protein forms well defined interactions with other protomers. At least two interacting faces were detected. The results of our TatA studies are compared with analogous data for the homologous, but functionally distinct, TatB protein. This comparison reveals that it is only in TatA that the amphipathic helix is sensitive to amino acid substitutions. The TatA amphipathic helix may play a role in forming and controlling the path of substrate movement across the membrane.
双精氨酸转运(Tat)系统可将折叠好的蛋白质转运穿过细菌的细胞质膜以及植物叶绿体的类囊体膜。膜整合蛋白TatA、TatB和TatC是Tat途径的关键组成部分。TatA形成高阶寡聚体,被认为构成了Tat系统的蛋白质转运单元。利用半胱氨酸扫描诱变技术,系统地研究了大肠杆菌TatA必需的N端跨膜和两亲性螺旋中残基的功能重要性。两亲性螺旋中大多数残基的半胱氨酸替代,包括螺旋疏水面上的所有残基,都会严重损害Tat功能。谷氨酰胺8被确定为跨膜螺旋中对TatA功能至关重要的唯一残基。跨膜螺旋中的半胱氨酸变体被用于二硫键定位实验,以探究TatA原聚体在更大的TatA复合物中的寡聚排列。跨膜螺旋中心的残基(包括10 - 16位残基)显示出独特的交联模式,表明该蛋白区域与其他原聚体形成了明确的相互作用。检测到至少两个相互作用面。我们对TatA的研究结果与同源但功能不同的TatB蛋白的类似数据进行了比较。这种比较表明,只有在TatA中两亲性螺旋对氨基酸替代敏感。TatA两亲性螺旋可能在形成和控制底物跨膜移动路径中发挥作用。