Suppr超能文献

构象折叠和二硫键形成驱动蛋白质结构形成的不同阶段。

Conformational folding and disulfide bonding drive distinct stages of protein structure formation.

机构信息

MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, P.R. China.

Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, P.R. China.

出版信息

Sci Rep. 2018 Jan 24;8(1):1494. doi: 10.1038/s41598-018-20014-y.

Abstract

The causal relationship between conformational folding and disulfide bonding in protein oxidative folding remains incompletely defined. Here we show a stage-dependent interplay between the two events in oxidative folding of C-reactive protein (CRP) in live cells. CRP is composed of five identical subunits, which first fold spontaneously to a near-native core with a correctly positioned C-terminal helix. This process drives the formation of the intra-subunit disulfide bond between Cys36 and Cys97. The second stage of subunit folding, however, is a non-spontaneous process with extensive restructuring driven instead by the intra-subunit disulfide bond and guided by calcium binding-mediated anchoring. With the folded subunits, pentamer assembly ensues. Our results argue that folding spontaneity is the major determinant that dictates which event acts as the driver. The stepwise folding pathway of CRP further suggests that one major route might be selected out of the many in theory for efficient folding in the cellular environment.

摘要

蛋白质氧化折叠中构象折叠和二硫键形成之间的因果关系仍不完全明确。在这里,我们展示了活细胞中 C 反应蛋白(CRP)氧化折叠过程中这两个事件之间的阶段依赖性相互作用。CRP 由五个相同的亚基组成,这些亚基首先自发折叠成具有正确定位的 C 端螺旋的近天然核心。这一过程驱动了 Cys36 和 Cys97 之间亚基内二硫键的形成。然而,亚基折叠的第二阶段是一个非自发过程,主要由亚基内二硫键驱动,并由钙结合介导的固定来引导。折叠的亚基随后进行五聚体组装。我们的结果表明,折叠的自发性是决定哪个事件起主导作用的主要决定因素。CRP 的逐步折叠途径进一步表明,在细胞环境中,一种主要途径可能从理论上的许多途径中被选择出来,以实现有效的折叠。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad9d/5784126/551d7eb52d2b/41598_2018_20014_Fig1_HTML.jpg

相似文献

2
Celluar Folding Determinants and Conformational Plasticity of Native C-Reactive Protein.
Front Immunol. 2020 Mar 31;11:583. doi: 10.3389/fimmu.2020.00583. eCollection 2020.
3
Intra-subunit Disulfide Determines the Conversion and Structural Stability of CRP Isoforms.
Inflammation. 2020 Apr;43(2):466-477. doi: 10.1007/s10753-019-01130-x.
4
The Formation of Native Disulfide Bonds: Treading a Fine Line in Protein Folding.
Protein J. 2021 Apr;40(2):134-139. doi: 10.1007/s10930-021-09976-7. Epub 2021 Mar 25.
5
Competition between DsbA-mediated oxidation and conformational folding of RTEM1 beta-lactamase.
Biochemistry. 1996 Sep 3;35(35):11386-95. doi: 10.1021/bi9608525.
7
Folding and oxidation of the antibody domain C(H)3.
J Mol Biol. 2002 Jun 21;319(5):1267-77. doi: 10.1016/S0022-2836(02)00375-3.
8
Folding of small disulfide-rich proteins: clarifying the puzzle.
Trends Biochem Sci. 2006 May;31(5):292-301. doi: 10.1016/j.tibs.2006.03.005. Epub 2006 Apr 5.
10

引用本文的文献

1
Redefining CRP in tissue injury and repair: more than an acute pro-inflammatory mediator.
Front Immunol. 2025 Feb 28;16:1564607. doi: 10.3389/fimmu.2025.1564607. eCollection 2025.
2
Efficient expression and purification of rat CRP in .
Front Immunol. 2024 Aug 26;15:1465365. doi: 10.3389/fimmu.2024.1465365. eCollection 2024.
3
C-reactive protein: structure, function, regulation, and role in clinical diseases.
Front Immunol. 2024 Jun 14;15:1425168. doi: 10.3389/fimmu.2024.1425168. eCollection 2024.
4
6
Secretory quality control constrains functional selection-associated protein structure innovation.
Commun Biol. 2022 Mar 25;5(1):268. doi: 10.1038/s42003-022-03220-3.
7
Pattern Recognition Proteins: First Line of Defense Against Coronaviruses.
Front Immunol. 2021 Sep 23;12:652252. doi: 10.3389/fimmu.2021.652252. eCollection 2021.
8
10
A Chemical Biology Approach to Probing the Folding Pathways of the Inhibitory Cystine Knot (ICK) Peptide ProTx-II.
Front Chem. 2020 Apr 3;8:228. doi: 10.3389/fchem.2020.00228. eCollection 2020.

本文引用的文献

1
In vivo aspects of protein folding and quality control.
Science. 2016 Jul 1;353(6294):aac4354. doi: 10.1126/science.aac4354.
2
Protein folding guides disulfide bond formation.
Proc Natl Acad Sci U S A. 2015 Sep 8;112(36):11241-6. doi: 10.1073/pnas.1503909112. Epub 2015 Aug 21.
3
4
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
5
6
Disulfide-bond scanning reveals assembly state and β-strand tilt angle of the PFO β-barrel.
Nat Chem Biol. 2013 Jun;9(6):383-9. doi: 10.1038/nchembio.1228. Epub 2013 Apr 7.
7
Periplasmic production via the pET expression system of soluble, bioactive human growth hormone.
Protein Expr Purif. 2013 Feb;87(2):129-35. doi: 10.1016/j.pep.2012.11.002. Epub 2012 Nov 17.
8
Protein folding drives disulfide formation.
Cell. 2012 Nov 9;151(4):794-806. doi: 10.1016/j.cell.2012.09.036.
9
Disulfide bonds: protein folding and subcellular protein trafficking.
FEBS J. 2012 Jul;279(13):2272-82. doi: 10.1111/j.1742-4658.2012.08636.x. Epub 2012 Jun 13.
10
A redox switch in C-reactive protein modulates activation of endothelial cells.
FASEB J. 2011 Sep;25(9):3186-96. doi: 10.1096/fj.11-182741. Epub 2011 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验