Suppr超能文献

近期对运动性 CPG 节律生成核心的深入了解

Recent Insights into the Rhythmogenic Core of the Locomotor CPG.

机构信息

Department of Physiology, University of Alberta, 3-020D Katz Building, Edmonton, AB T6G 2E1, Canada.

出版信息

Int J Mol Sci. 2021 Jan 30;22(3):1394. doi: 10.3390/ijms22031394.

Abstract

In order for locomotion to occur, a complex pattern of muscle activation is required. For more than a century, it has been known that the timing and pattern of stepping movements in mammals are generated by neural networks known as central pattern generators (CPGs), which comprise multiple interneuron cell types located entirely within the spinal cord. A genetic approach has recently been successful in identifying several populations of spinal neurons that make up this neural network, as well as the specific role they play during stepping. In spite of this progress, the identity of the neurons responsible for generating the locomotor rhythm and the manner in which they are interconnected have yet to be deciphered. In this review, we summarize key features considered to be expressed by locomotor rhythm-generating neurons and describe the different genetically defined classes of interneurons which have been proposed to be involved.

摘要

为了实现运动,需要一种复杂的肌肉激活模式。一个多世纪以来,人们已经知道哺乳动物的踏步运动的时间和模式是由被称为中枢模式发生器(CPG)的神经网络产生的,CPG 由位于脊髓内的多个中间神经元细胞类型组成。最近,一种遗传方法成功地确定了构成这个神经网络的几个脊髓神经元群体,以及它们在踏步运动中的特定作用。尽管取得了这一进展,但产生运动节律的神经元的身份以及它们相互连接的方式仍有待破译。在这篇综述中,我们总结了被认为是产生运动节律的神经元所表达的关键特征,并描述了被提出参与其中的不同遗传定义的中间神经元类群。

相似文献

1
Recent Insights into the Rhythmogenic Core of the Locomotor CPG.
Int J Mol Sci. 2021 Jan 30;22(3):1394. doi: 10.3390/ijms22031394.
2
The role of genetically-defined interneurons in generating the mammalian locomotor rhythm.
Integr Comp Biol. 2011 Dec;51(6):903-12. doi: 10.1093/icb/icr022. Epub 2011 May 15.
3
Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.
J Neurosci. 2017 Nov 8;37(45):10835-10841. doi: 10.1523/JNEUROSCI.1829-17.2017.
4
Locomotor circuits in the mammalian spinal cord.
Annu Rev Neurosci. 2006;29:279-306. doi: 10.1146/annurev.neuro.29.051605.112910.
5
Localization of Rhythm Generating Components of the Mammalian Locomotor Central Pattern Generator.
Neuroscience. 2023 Mar 1;513:28-37. doi: 10.1016/j.neuroscience.2023.01.013. Epub 2023 Jan 23.
6
Excitatory components of the mammalian locomotor CPG.
Brain Res Rev. 2008 Jan;57(1):56-63. doi: 10.1016/j.brainresrev.2007.07.002. Epub 2007 Nov 7.
7
Organization of flexor-extensor interactions in the mammalian spinal cord: insights from computational modelling.
J Physiol. 2016 Nov 1;594(21):6117-6131. doi: 10.1113/JP272437. Epub 2016 Jul 21.
8
-Expressing Interneurons Regulate Left-Right Alternation during Mammalian Locomotor Activity.
J Neurosci. 2018 Jun 20;38(25):5666-5676. doi: 10.1523/JNEUROSCI.0328-18.2018. Epub 2018 May 22.
9
Diversity of molecularly defined spinal interneurons engaged in mammalian locomotor pattern generation.
J Neurophysiol. 2017 Dec 1;118(6):2956-2974. doi: 10.1152/jn.00322.2017. Epub 2017 Aug 30.
10
Anatomical and electrophysiological characterization of a population of dI6 interneurons in the neonatal mouse spinal cord.
Neuroscience. 2017 Oct 24;362:47-59. doi: 10.1016/j.neuroscience.2017.08.031. Epub 2017 Aug 24.

引用本文的文献

2
Central Pattern Generators in Spinal Cord Injury: Mechanisms, Modulation, and Therapeutic Strategies for Motor Recovery.
JOR Spine. 2025 Aug 11;8(3):e70100. doi: 10.1002/jsp2.70100. eCollection 2025 Sep.
3
Neurobiological mechanism of music improving gait disorder in patients with Parkinson's disease: a mini review.
Front Neurol. 2025 Jan 3;15:1502561. doi: 10.3389/fneur.2024.1502561. eCollection 2024.
5
Switching neuron contributions to second network activity.
J Neurophysiol. 2024 Feb 1;131(2):417-434. doi: 10.1152/jn.00373.2023. Epub 2024 Jan 10.
6
Distinguishing subtypes of spinal locomotor neurons to inform circuit function and dysfunction.
Curr Opin Neurobiol. 2023 Oct;82:102763. doi: 10.1016/j.conb.2023.102763. Epub 2023 Aug 21.
7
Spinal Interneurons: Diversity and Connectivity in Motor Control.
Annu Rev Neurosci. 2023 Jul 10;46:79-99. doi: 10.1146/annurev-neuro-083122-025325. Epub 2023 Feb 28.
8
9
Movement is governed by rotational neural dynamics in spinal motor networks.
Nature. 2022 Oct;610(7932):526-531. doi: 10.1038/s41586-022-05293-w. Epub 2022 Oct 12.
10
Left-Right Locomotor Coordination in Human Neonates.
J Neurosci. 2022 Aug 24;42(34):6566-6580. doi: 10.1523/JNEUROSCI.0612-22.2022. Epub 2022 Jul 13.

本文引用的文献

1
Brainstem neurons that command mammalian locomotor asymmetries.
Nat Neurosci. 2020 Jun;23(6):730-740. doi: 10.1038/s41593-020-0633-7. Epub 2020 May 11.
2
The rhythm section: An update on spinal interneurons setting the beat for mammalian locomotion.
Curr Opin Physiol. 2019 Apr;8:84-93. doi: 10.1016/j.cophys.2019.01.004. Epub 2019 Jan 29.
3
Spinal Shox2 interneuron interconnectivity related to function and development.
Elife. 2018 Dec 31;7:e42519. doi: 10.7554/eLife.42519.
4
Sub-populations of Spinal V3 Interneurons Form Focal Modules of Layered Pre-motor Microcircuits.
Cell Rep. 2018 Oct 2;25(1):146-156.e3. doi: 10.1016/j.celrep.2018.08.095.
5
Principles Governing Locomotion in Vertebrates: Lessons From Zebrafish.
Front Neural Circuits. 2018 Sep 13;12:73. doi: 10.3389/fncir.2018.00073. eCollection 2018.
7
Network oscillation rules imposed by species-specific electrical coupling.
Elife. 2018 May 3;7:e33144. doi: 10.7554/eLife.33144.
8
Gap junction plasticity as a mechanism to regulate network-wide oscillations.
PLoS Comput Biol. 2018 Mar 12;14(3):e1006025. doi: 10.1371/journal.pcbi.1006025. eCollection 2018 Mar.
9
Distinct Contributions of Mesencephalic Locomotor Region Nuclei to Locomotor Control in the Freely Behaving Mouse.
Curr Biol. 2018 Mar 19;28(6):884-901.e3. doi: 10.1016/j.cub.2018.02.007. Epub 2018 Mar 8.
10
Midbrain circuits that set locomotor speed and gait selection.
Nature. 2018 Jan 25;553(7689):455-460. doi: 10.1038/nature25448. Epub 2018 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验