McEvoy Michael, Cao Guan, Montero Llopis Paula, Kundel Mitchell, Jones Kendrick, Hofler Catherine, Shin Chan, Wells David G
Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, USA.
J Neurosci. 2007 Jun 13;27(24):6400-11. doi: 10.1523/JNEUROSCI.5211-06.2007.
The ability of neurons to modify synaptic connections is critical for proper brain development and function in the adult. It is now clear that changes in synaptic strength are often accompanied by changes in synaptic morphology. This synaptic plasticity can be maintained for varying lengths of time depending on the type of neuronal activity that first induced the changes. Long-term synaptic plasticity requires the synthesis of new proteins, and one mechanism for the regulation of experience-induced protein synthesis in neurons involves cytoplasmic polyadenylation element binding protein (CPEB1). CPEB1 can bidirectionally regulate mRNA translation, first repressing translation, and then activating translation after the phosphorylation of two critical residues (T171 and S177). To determine the full extent of CPEB1-mediated protein synthesis in synaptic function, we engineered a line of mice expressing CPEB1 with these phosphorylation sites mutated to alanines (mCPEB1-AA) exclusively in cerebellar Purkinje neurons (PNs). Thus, mRNAs bound by mCPEB1-AA would be held in a translationally dormant state. We show that mCPEB1-AA localizes to synapses in cerebellum and resulted in a loss of protein synthesis-dependent phase of parallel fiber-PN long-term depression. This was accompanied by a change in spine number and spine length that are likely attributable in part to the dysregulation of IRSp53, a protein known to play a role in synaptic structure. Finally, mCPEB1-AA mice displayed a significant impairment of motor coordination and a motor learning delay.
神经元修饰突触连接的能力对于大脑的正常发育和成年期功能至关重要。现在已经清楚的是,突触强度的变化通常伴随着突触形态的改变。这种突触可塑性可以根据最初诱导变化的神经元活动类型而维持不同的时间长度。长期突触可塑性需要合成新的蛋白质,而神经元中经验诱导的蛋白质合成调控的一种机制涉及细胞质聚腺苷酸化元件结合蛋白(CPEB1)。CPEB1可以双向调节mRNA翻译,首先抑制翻译,然后在两个关键残基(T171和S177)磷酸化后激活翻译。为了确定CPEB1介导的蛋白质合成在突触功能中的全部范围,我们构建了一系列小鼠,这些小鼠仅在小脑浦肯野神经元(PNs)中表达这些磷酸化位点突变为丙氨酸的CPEB1(mCPEB1-AA)。因此,与mCPEB1-AA结合的mRNA将处于翻译休眠状态。我们表明,mCPEB1-AA定位于小脑的突触,并导致平行纤维-PN长时程抑制的蛋白质合成依赖性阶段丧失。这伴随着棘突数量和棘突长度的变化,这可能部分归因于IRSp53的失调,IRSp53是一种已知在突触结构中起作用的蛋白质。最后,mCPEB1-AA小鼠表现出明显的运动协调受损和运动学习延迟。